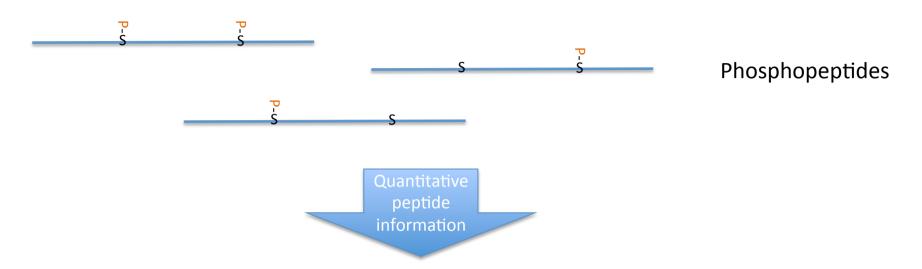
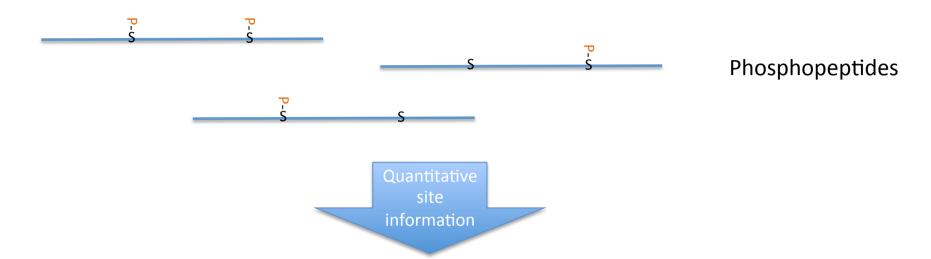

Interpreting MQ Phosphopeptide Results

Format of results


- Usually we analyse phosphoproteomic data with MaxQuant
- You get the following result files either as single files or in a combined Excel file:
 - 1. XX-XXX¹_ProteinGroups
 - 2. XX-XXX¹_Phosphosites (STY)
- On request we can also provide other MQ output files

Phosphosites vs. Phosphopeptides

- Phosphosites are NOT Phosphopeptides!!!
- A phosphosite is a serine/threonine/tyrosine with a distinct location in the protein sequence, which is phosphorylated
- Quantitative information for each site is derived from ALL detected peptides, which are phosphorylated at this position (=combined/condensed information)


Example (evidence table)

Peptide	Intensity		Ratio H/L (normalized)
RILILS(P)GAAPS(P)EE	300000	OR for SILAC based	2.3
RILILS(P)GAAPSEE	100000	approaches >	1.2
RILILSGAAPS(P)EE	500000		1.7

This information can be found in the MQ output file: evidence.txt

Example (phosphosite table)

Position s within proteins	Intensit y	Intensit y1	Intensit y2	Intensit y3	OR for SILAC based	Ratio H/ L (norm)	Ratio H/ L (norm)_ 1	Ratio H/ L (norm)_ 2	Ratio H/ L (norm)_ 3
19	400000	100000	300000	0	approac hes ->	1.2	1.2	2.3	NaN
32	800000	500000	300000	0		1.7	1.7	2.3	NaN

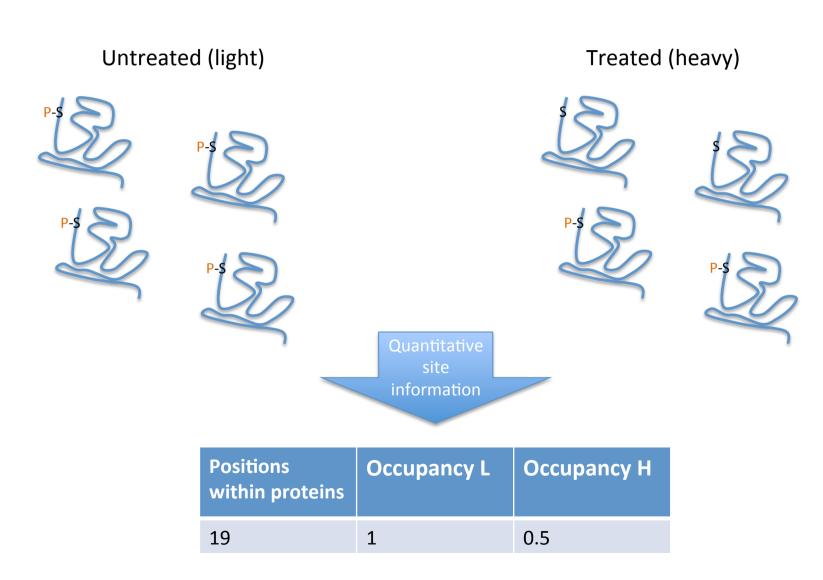
This information can be found in the MQ output file: Phospho (STY)Sites.txt

Phospho (STY) table

- This table (+/-the proteingroups table) is usually sufficient to make qualified assumptions about changes in the phosphorylation status of proteins between samples
- Key quantitative values are:
 - Occupancy (mainly applicable for SILAC data)
 - Intensity__1/2/3 OR Ratio H/L__1/2/3

__1, __2, __3 ? What does that mean?

___1, ___2, ___3 ???

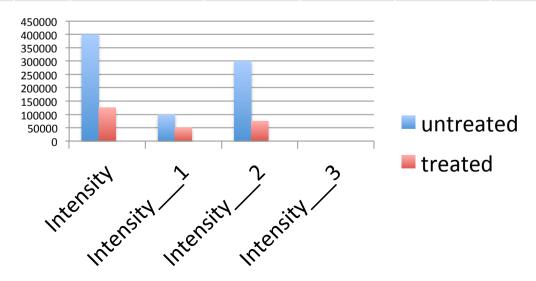

Positi ons withi n prote ins	Amin o acid	Intensity untreated	Intensity untreated1	Intensity untreated2	Intensity untreated_ 3	Intensity treated	Intensity treated 1	Intensity treated2	Intensity treated3
19	S	400000	100000	300000	0	125000	50000	75000	0
			1	1	1		1	1	1

- There is quantitative information derived from single, double or triple(&higher) phosphorylated peptides
- Using this intensities is MUCH better then looking just at the summed site intensities, because in a biological system the same protein may have distinct functions when it is differentially phosphorylated.

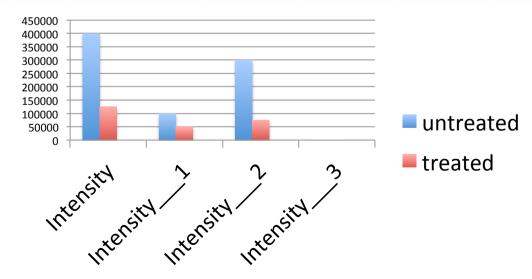
Occupancy

- Fraction of protein for which the site is modified (Value from 0 - 1 → 0 -100% modified)
 - This value is calculated from three separate ratios:
 - Ratio H/L proteingroup
 - Ratio H/L modified peptide (here: phosphorylation)
 - Ratio H/L unmodified counterpart peptide
 - Occupancy is calculated for every labeling state if all three ratios are present

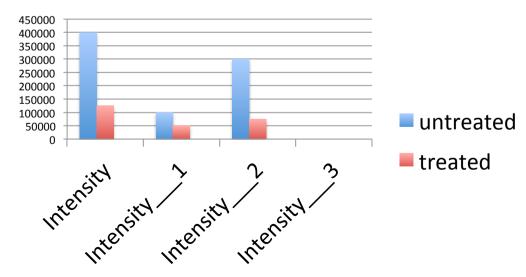
Occupancy example


No occupancy values...

- If I don't have occupancy values I must look at two types of data:
- 1. Phosphosite quant data (Phosphosites (STY).txt
 - A. Intensities $1/2/3 \rightarrow$ label free data
 - B. Ratio H/L (norm)___1/2/3 → SILAC data


- 2. ProteinGroup quant data (ProteinGroups.txt)
 - A. LFQ Intensity → label-free data
 - B. Ratio H/L (norm) → SILAC data

Posi tion s with in prot eins	Ami no acid	Intensity untreated	Intensity untreate d1	Intensity untreate d2	Intensity untreate d3	Intensity treated	Intensity treated _1	Intensity treated _2	Intensity treated3
19	S	400000	100000	300000	0	125000	50000	75000	0


→ From this we could assume that serine at position 19 is more phosphorylated under the untreated condition

Posi tion s with in prot eins	Ami no acid	Intensity untreated	Intensity untreate d1	Intensity untreate d2	Intensity untreate d3	Intensity treated	Intensity treated _1	Intensity treated _2	Intensity treated _3
19	S	400000	100000	300000	0	125000	50000	75000	0

→ But what about the protein level? Maybe the whole protein is less abundant in the treated sample?

Pos tior s wit in pro eins	no acid	Intensity untreated	Intensity untreate d1	Intensity untreate d2	Intensity untreate d3	Intensity treated	Intensity treated _1	Intensity treated _2	Intensity treated3
19	S	400000	100000	300000	0	125000	50000	75000	0

So you need to also look at the quant protein data (proteingroups.txt) before making any assumptions!!!