

Tutorial: Processing MaxQuant-Data with Perseus

Perseus 1.5.1.6

What is Perseus?

- Powerful statistical software package developed by the Matthias Mann group (Freeware)
- Especially suited to analyze, evaluate and visualize MaxQuant-derived proteomic data

Installation

- Requirements:
 - Operating System: Microsoft Windows Vista or better (but can be run on a Mac via Parallels or Bootcamp etc.)
 - Preinstalled Software: Microsoft .NET Framework
 4.5 (<u>http://www.microsoft.com/de-de/download</u>)
 - Perseus Registration Code (free-of-charge onlineregistration) → <u>click here</u>

Installation

- 1. Download Perseus
 - Perseus is provided as a single compressed file (.zip)

- You can download it by clicking <u>here</u> (Keep your registration code at hand)
- 2. Uncompress the zip-file and move the containing Perseus folder to a destination of choice

Start Perseus by double clicking Perseus.exe

😋 🔾 🗸 🕨 ocomputer 🔸 Data Robert (D	D:) ▶ Software ▶ Perseus 1.5.1.6 ▶			
Organize 👻 Include in library 👻 Shar	re with 🔻 🛛 Burn 🛛 New folder			
🔶 Favorites	Name	Date modified	Туре	Size
🧮 Desktop	🐌 conf	02.02.15 13:10	File folder	
🐌 Downloads	🚳 BaseLib.dll	02.02.15 13:07	Application extens	1,836 KB
📳 Recent Places	🚳 BaseLibS.dll	02.02.15 13:07	Application extens	250 KB
😌 Dropbox	🚳 itextsharp.dll	02.02.15 13:07	Application extens	3,436 KB
🕌 MS-Ergebnisse (MS-NAS-LAUFWERK	Microsoft.Windows.Shell.dll	02.02.15 13:07	Application extens	164 KB
Protokolle (MS-NAS-LAUFWERK)	Microsoft.Windows.Shell.xml	02.02.15 13:07	XML File	51 KB
iCloud Drive	🚳 NumPluginBase.dll	02.02.15 13:07	Application extens	39 KB
🛞 iCloud Photos	NumPluginBase2.dll	02.02.15 13:07	Application extens	19 KB
	📔 Perseus.exe	02.02.15 13:07	Application	71 KB
🥱 Libraries 🗧	Perseus.exe.config	02.02.15 13:07	CONFIG File	1 KB
Documents	🚳 PerseusApi.dll	02.02.15 13:07	Application extens	37 KB
👌 Music	🚳 PerseusLib.dll	02.02.15 13:07	Application extens	348 KB
E Pictures	🚳 PerseusPluginLib.dll	02.02.15 13:07	Application extens	317 KB
🛃 Videos	🚳 PluginBase.dll	02.02.15 13:07	Application extens	1,778 KB
	🚳 RibbonControlsLibrary.dll	02.02.15 13:07	Application extens	784 KB
🖳 Computer	RibbonControlsLibrary.xml	02.02.15 13:07	XML File	779 KB
🏭 Local Disk (C:)	🚳 Utils.dll	02.02.15 13:08	Application extens	26,581 KB
🔢 Data Robert (D:)	🚳 UtilsC.dll	02.02.15 13:08	Application extens	209 KB

The software's main window opens

The software's main window opens

Click on the small green arrow in the upper left corner

The data is needed in a tab-separated format \rightarrow Data export from Excel

1.Open Excel-file with protein/peptide results

K 🛃 ⊮) × (≈ × =							prote	inGroupsVBA.xlsx - Micros	oft Excel								- 0
Datei Start Einfügen	Seitenlayout	Formein	Daten (Überprüfen	Ansicht Acro	obat											∞ 🕜 =
A198 -	<i>f</i> _x P42	212;CON_Q	19U6Y5														
A	В	С	D	E	F	G	н	L J	K	L	M	N	0	Р	Q	R	S
Protein IDs	Majority pro	Peptide cou	ur Peptide co	our Peptide o	our Protein nam	Gene names	Fasta header	Number of p Peptides	Razor + un	iq Unique pep	t Peptides 1	Razor + uniq	Unique per	ot Sequence co	Unique + raz Un	ique sequ Ma	ol. weigh
2 T	т	N	N	N	т	т	т	N	N	N	N	N	N	N	N N	N	
A0FGR8	A0FGR8		4	4	4 Extended sy	ESYT2	>sp A0FGR8	1	4	4 1	4 4	4 4		4 4.7	4.7	4.7	102.3
A2RUC4	A2RUC4		1	1	1 tRNA wybut	TYW5	>sp A2RUC4	1	1	1 7	1 7	1 1		1 4.8	4.8	4.8	36.54
5 A4UGR9	A4UGR9		1	1	1 Xin actin-bir	XIRP2	>sp A4UGR9	1	1	1 7	1 7	1 1		1 0.7	0.7	0.7	382
5 A5YKK6	A5YKK6		1	1	1 CCR4-NOT tr	CNOT1	>sp A5YKK6	1	1	1 /	1 1	1 1		1 0.6	0.6	0.6	266.
7 P07355;A6NMY6	P07355;A6N	3;3	3;3	3;3	Annexin A2;	ANXA2;ANX	>sp P07355	2	3	3 /	3 7	3 3		3 10.9	10.9	10.9	38.6
P11231;B1NKU2;B1NKT8;B1	LT P11231;B1NK	1;1;1;1;1;1;1;1	1 1;1;1;1;1;1;	;1 1;1;1;1;1;	1;1		>sp P11231	7	1	1 /	1 1	1 1		1 1.9	1.9	1.9	103.
9 A8MPS7	A8MPS7		1	1	1 UPF0249 pro	DIC	>splA8MPS7	1	1	1 :	1 7	1 1		1 4.3	4.3	4.3	34.4
0 A8MV23	A8MV23		1	1	1 Serpin E3	SERPINE3	>splA8MV23	1	1	1	1 :	1 1		1 1.9	1.9	1.9	46.9
1 CON P00761	CON P0076		2	2	2		>P00761 SWI	1	2	2	2 :	2 2		2 7.8	7.8	7.8	24.4
2 P02533:CON P02533:0046	5 P02533:CON	13:13:5:5:5:	- 5 9:9:2:2:?·1·	:1: 5:5:1:1:1:	0:0: Keratin, typ	KRT14	>sp P025331	43	13	9	5 17	3 9		5 32.6	27.3	16.7	51.5
3 P02538:CON P02538:P486	6 P02538:CON	13:13:12:12	18:8:7:7:7:1	:1: 1:1:0:0:0:	0:0: Keratin, typ	KRT64:KRT6	>sn P02538	9	13	8	1 12	3 8		1 27	18.1	1.8	60.0
4 CON P02662	CON P0266		2	2	2		>P02662 SWI	1	2	2	,	2 2		2 11.1	11.1	11.1	22.9
5 CON P02754	CON P0275		1	1	1		>P02754 SWI	1	1	1	1	1 1		1 86	8.6	8.6	18.2
5 P09779:CON P09779	D09779-CON	11-11	2.2	2.2	Koratin typ	KPT16	>col 0097791	2	11	2	2 1	1 2		2 26.6	10.9	10.9	51.2
7 P12645(CONP08775	PIB//J,CON	20,20,0,2,2,	3,5	3,5	111 Koratin, typ	KRT10	>sp[P00775]	12	20		2 20	2 39		5 20.0	E2 1	46.7	50.0
P13643,CON_P13643,CON	P13043,CON	20,20,3,5,5,	5 20,20,3,5,5	2,22,22,3,1	Koratin, typ	VDTE	>sp[P13043]	12	11	co 24	20	3 20	4	2 30.2	33.1	40.7	50.0
P15047,CON_P15047,CON	_ P15047,CON	22,22	3,3,0	3,3,0	Keratin, typ	KNTO	>sp[P15047]	3	22	3 3	, <u>1</u>	L J		20.3	5.5	5.5	62.5
9 P35527;CON_P35527	P35527;CON	23;23	22;22	22;22	Keratin, typ	KRT9	>sp[P35527]	2	23 .	12 24	2 Z:	3 22	2	2 54.3	53.1	53.1	02.0
0 P35908;CON_P35908;Q015	52 P35908;CON	20;20;3;2;2;	2 18;18;3;2;2	2;2 13;13;0;0;	U;U Keratin, typ	EKRIZ	>sp1P359081	20	20 .	18 1:	3 20	J 18	1	.3 41.8	38.7	30.2	65.4
I CON_Q3SZH5	CON_Q3SZ		1	1	1		>Q35ZH5 TRE	1	1	1 1	1 1	1 1		1 1./	1.7	1.7	45.4
2 Q5D862;CON_Q5D862	Q5D862;CON	1;1	1;1	1;1	Filaggrin-2	FLG2	>sp Q5D862	2	1	1 1	1 1	1 1		1 0.5	0.5	0.5	248
3 Q7Z794;CON_Q7Z794	Q72794;CON	2;2	1;1	1;1	Keratin, typ	EKRT77	>sp Q7Z794	2	2	1 1	1 3	2 1		1 3.8	1.7	1.7	61.9
4 000148;Q13838	000148;Q138	1;1	1;1	1;1	ATP-depend	DDX39A;DD	>sp 000148	2	1	1 1	1 1	1 1		1 2.3	2.3	2.3	49.1
5 000165	000165		5	5	5 HCLS1-assoc	HAX1	>sp 000165	1	5	5 5	5 5	5 5		5 21.1	21.1	21.1	31
6 000217	000217		1	1	1 NADH dehyd	NDUFS8	>sp 000217	1	1	1 1	1 1	1 1		1 4.3	4.3	4.3	23.7
7 000264	O00264		3	3	3 Membrane-	PGRMC1	>sp 000264	1	3	3 3	3 3	3 3		3 16.4	16.4	16.4	21.6
8 000327	O00327		1	1	1 Aryl hydroca	ARNTL	>sp 000327	1	1	1 2	1 2	1 1		1 1.4	1.4	1.4	68.7
9 000483	O00483		3	3	3 NADH dehyd	NDUFA4	>sp 000483	1	3	3	3 2	3 3		3 37	37	37	9.36
0 000487	O00487		1	1	1 26S protease	PSMD14	>sp 000487	1	1	1 :	1 7	1 1		1 4.2	4.2	4.2	34.5
1 000571;015523;Q9NQI0	000571;0155	6;4;1	6;4;1	6;4;1	ATP-depend	DDX3X;DDX3	>sp 000571	3	6	6 (5 (5 6		6 11.6	11.6	11.6	73.2
2 014654	O14654		6	6	6 Insulin rece	IRS4	>sp 014654	1	6	6 (5 (5 6		6 6.6	6.6	6.6	133.
3 014681	O14681		2	2	2 Etoposide-in	EI24	>sp 014681	1	2	2 :	2 :	2 2		2 5.9	5.9	5.9	38.9
4 014734	014734		1	1	1 Acyl-coenzy	ACOT8	>sp 014734	1	1	1 7	1 7	1 1		1 2.8	2.8	2.8	35.9
5 014735	014735		2	2	2 CDP-diacylg	CDIPT	>sp 014735	1	2	2 /	2 7	2 2		2 11.3	11.3	11.3	23.5
6 014880	014880		2	2	2 Microsomal	MGST3	>sp 014880	1	2	2	2 2	2 2		2 17.8	17.8	17.8	16.5
7 014910;Q9NUP9;Q9HAP6	014910;Q9N	2;1;1	2;1;1	2;1;1	Protein lin-7	LIN7A;LIN7C	>sp 014910	3	2	2	2 :	2 2		2 9	9	9	25.9
8 014925:05SRD1	014925:055	7:5	7:5	7:5	Mitochondr	TIMM23:TIM	>sp 014925	2	7	7	, .	7 7		7 61.7	61.7	61.7	21.9
014966:P57729:013637	014966	4:1:1	4:1:1	4:1:1	Ras-related	RAB7L1	>sp 014966	3	4	4 /	4 /	4 4		4 23.2	23.2	23.2	23.1
0 014967	014967		1	1	1 Calmegin	CLGN	>sp 014967	1	1	1	1	1 1		1 18	1.8	1.8	70 0
1 014980	014980		1	1	1 Exportin-1	XPO1	>sn 014980	1	1	1		1 1		1 11	1.1	1.1	122
2 015120	015120		2	2	2 1-acyl-sp. db	AGRAT2	>sp[015120]	1	2	2		2 2		2 04	9.4	9.4	30.0
2 015359	015259		1	1	1 Protoin PCP	10001	>cp[015120]	1	1	1		1 1		1 5.6	5.4	5.6	20.9
4 015250	015256				4 Susfait I	CUDEA	~sp[015258	1	4	4		. 1		1 5.0	3.0	3.0	22.9
0000 1 1 1 m / DU	1112/001			4	4 SUITEIT IOCUS	COURT A	<>010152601		(4)	- AL	. /			4 18.6	0.61	LX D	30.3

2.Click on File (Datei) → Save as (Speichern unter)

3. As file format (Dateityp) choose "Text (Tab delimited) (*.txt)

X Speichern unter					to Manufilled			x					- 0 X
	omputer Local Disk (C:) Users Ann	ette 🕨 Desktop 🕨				▼ 4 Search Desktop		Q					∨ (?) - @ X
							_						~
Organize 🔻 Ne	ew folder									Р	Q	R	S
🥅 Desktop	*	Name	Date modified	Туре	Size				e pept Sec	quence co Un	ique + raz Uni	ique sequ M	Iol. weight Seq
🗼 Downloads			00.004544.05						N	N	N	N	N
🕮 Recent Places	s	Alte Firefox-Daten	02.02.15 11:26	Filefolder					4	4.7	4.7	4.7	102.36
Dropbox	-	DBond Viewer v3.01	19.02.14 18:32	File folder					1	4.8	4.8	4.8	36.547
MS-Ergebniss	se (MS-NAS-LAUFWERK)	bond_v3.02	16.04.14 12:55	File folder					1	0.7	0.7	0.7	382.3
Protokolle (M	AS-NAS-LAUEWERK)	DeNovoGUI-1.2.3-windows	14.02.14 10:42	File folder					1	0.6	0.6	0.6	266.94
iCloud Drive		ProteoWizard 3.0.5759 64-bit	02.06.14 18:46	File folder					3	10.9	10.9	10.9	38.604
iCloud Photo		xqxp_V2_1_1_VM	04.11.14 09:37	File folder					1	1.9	1.9	1.9	103.75
		🔊 Data Robert (D) - Shortcut (2)	03.02.15 12:53	Shortcut	1 KB				1	4.3	4.3	4.3	34.466
🚞 Librarian		🔊 Data Robert (D) - Shortcut	03.02.15 13:00	Shortcut	1 KB				1	1.9	1.9	1.9	46.962
De sum ente									2	7.8	7.8	7.8	24.409
Documents									5	32.6	27.3	16.7	51.561
a) Music									1	27	18.1	1.8	60.044
Pictures									2	11.1	11.1	11.1	22.975
Videos									1	8.6	8.6	8.6	18.281
_									3	26.6	10.8	10.8	51.267
Computer									22	53.1	53.1	46.7	58.826
Local Disk (C:	:)								3	20.3	9.3	5.9	62.378
🔞 Data Robert ((D:)								22	54.3	53.1	53.1	62.064
👝 DataAS2 (E:)	Ŧ								13	41.8	38.7	30.2	65.432
Dateiname:	proteinGroupsVBA.txt							•	1	1.7	1.7	1.7	45.456
Detaitor	Test (Telestern estered) (***)								1	0.5	0.5	0.5	248.07
Dateityp:	First (Tabstopp-getrennt) (".bt)								1	3.8	1.7	1.7	61.901
Authors:	Excel-Arbeitsmappe (".xisx) Excel-Arbeitsmappe mit Makros (*.xism)								1	2.3	2.3	2.3	49.129
	Excel-Binärarbeitsmappe (*.xlsb)								5	21.1	21.1	21.1	31.62
A .	Excel 97-2003-Arbeitsmappe (*.xls)								1	4.3	4.3	4.3	23.705
 Ordner ausblend 	Einzelnes Webarchiv (*.mht:*.mhtml)								3	16.4	16.4	16.4	21.671
	Webseite (*.htm;*.html)							2	1	1.4	1.4	1.4	68.761
29 000483	Excel-Vorlage (*.xltx) Excel-Vorlage mit Makros (*.vltm)							- 8	3	37	37	37	9.3697
30 000487	Excel 97-2003-Vorlage (*.xit)							-	1	4.2	4.2	4.2	34.577
31 000571:015. 30	Text (Tabstopp-getrennt) (*.txt)								6	11.6	11.6	11.6	73.243
32 014654	Unicode Text (*.txt) XML-Kalkulationstabelle 2003 (*.vml)							-	6	6.6	6.6	6.6	133.77
33 014681	Microsoft Excel 5.0/95-Arbeitsmappe (*.xls)							-	2	5.9	5.9	5.9	38.964
34 014734	CSV (Trennzeichen-getrennt) (*.csv)							-	1	2.8	2.8	2.8	35.914
35 014735	Formatierter Lext (Leerzeichen getrennt) (*.p	orn)						-	2	11.3	11.3	11.3	23.539
36 O14880	Text (MS-DOS) (*.txt)							-	2	17.8	17.8	17.8	16.516
37 O14910;Q9NUP9	CSV (Macintosh) (*.csv)							-	2	9	9	9	25.996
38 O14925;Q5SRD1	CSV (MS-DOS) (*.csv) DIE (Data Interchange-Format) (* dif)							-	7	61.7	61.7	61.7	21.943
39 O14966;P57729;C	SYLK (symbolische Verbindung) (*.slk)								4	23.2	23.2	23.2	23.155
40 014967	Excel-Add-In (* xlam)								1	1.8	1.8	1.8	70.038
41 014980	Excel 97-2003-Add-In (*.xla)								1	1.1	1.1	1.1	123.38
42 015120	XPS-Dokument (*.xps)							-	2	9.4	9.4	9.4	30.914
43 015258	OpenDocument-Kalkulationstabelle (*.ods)								1	5.6	5.6	5.6	22.958
44 015260	015260 4	4 4 Surfeit locus	SURF4 >sp 0152	60 1	4 4	4 4		4	4	18.6	18.6	18.6	30.394

4. Confirm export by clicking OK \rightarrow Note that only the currently selected datasheet is exported

X	III 17 × (11 × I∓							protei	inGroupsVBA.xlsx -	Microsoft Exc	el								- 0 X	
D	Datei Start Einfügen	Seitenlayout	Formein	Daten Ü	berprüfen	Ansicht Acr	obat												v 🕜 🗆 🗗	23
	- (e)	fx P42	212:CON 0	9U6Y5																~
	A	P		D	E C	c	G	u II	1	1.1	K	I M	N		0	D	0	D	c	Ξ
1	Protein IDs	Majority pro	Pentide cou	u Pentide cou	u Pentide cou	u Protein nam	Gene names	Fasta header	Number of n Per	ntides Ra	zor + uniquilini	que nent Pentide	s 1 Razor -	+ unia Unia	ue nent Segu	ence co l In	ique + raz Uni		J weight Seg	
2	T	т	N	N	N	T	T	T	N	N N	N	N	N	N	N N	N	N	N	N N N	
3	A0EGR8	A0FGR8		1 .	4 .	4 Extended sy	/ ESYT2	>splA0EGR8	1	4	4	4	4	4	4	4.7	4.7	4.7	102.36	
4	A2RUC4	A2RUC4		1	1	1 tRNA wybut	TYW5	>sp A2RUC4	1	1	1	1	1	1	1	4.8	4.8	4.8	36.547	
5	A4UGR9	A4UGR9		1	1	1 Xin actin-bi	n XIRP2	>sp A4UGR9	1	1	1	1	1	1	1	0.7	0.7	0.7	382.3	
6	A5YKK6	A5YKK6		1	1	1 CCR4-NOT t	r CNOT1	>sp A5YKK6	1	1	1	1	1	1	1	0.6	0.6	0.6	266.94	
7	P07355;A6NMY6	P07355;A6N	3;3	3:3	3:3	Annexin A2	ANXA2;ANX	>sp P07355	2	3	3	3	3	3	3	10.9	10.9	10.9	38.604	
8	P11231;B1NKU2;B1NKT8;B1	P11231;B1N	1;1;1;1;1;1;1;1	1;1;1;1;1;1;1;	1;1;1;1;1;1;1;	l l		>sp P11231	7	1	1	1	1	1	1	1.9	1.9	1.9	103.75	
9	A8MPS7	A8MPS7		1	1	1 UPF0249 pro	YDJC	>sp A8MPS7	1	1	1	1	1	1	1	4.3	4.3	4.3	34.466	
10	A8MV23	A8MV23		1	1	1 Serpin E3	SERPINE3	>sp A8MV23	1	1	1	1	1	1	1	1.9	1.9	1.9	46.962	
11	CON_P00761	CONP0076		2	2	2		>P00761 SWI	1	2	2	2	2	2	2	7.8	7.8	7.8	24.409	
12	P02533;CON_P02533;Q046	P02533;CON	13;13;5;5;5;	5 9;9;2;2;2;1;1	L; 5;5;1;1;1;0;0); Keratin, typ	e KRT14	>sp P02533	43	13	9	5	13	9	5	32.6	27.3	16.7	51.561	
13	P02538;CON_P02538;P486	6 P02538;CON	13;13;12;12;	18;8;7;7;7;1;1	L; 1;1;0;0;0;0;0;); Keratin, typ	e KRT6A;KRT60	>sp P02538	9	13	8	1	13	8	1	27	18.1	1.8	60.044	
14	CONP02662	CONP0266	i :	2	2	2		>P02662 SWI	1	2	2	2	2	2	2	11.1	11.1	11.1	22.975	
15	CONP02754	CONP0275	5	1	1	1		>P02754 SWI	1	1	1	1	1	1	1	8.6	8.6	8.6	18.281	
16	P08779;CON_P08779	P08779;CON	11;11	3;3	3;3	Keratin, typ	e KRT16	>sp P08779	2	11	3	3	11	3	3	26.6	10.8	10.8	51.267	
17	P13645;CON_P13645;CON	P13645;CON	28;28;9;3;3;	3 28;28;9;3;3;	3 22;22;5;1;1;	1 Keratin, typ	e KRT10	>sp P13645	12	28	28	22	28	28	22	53.1	53.1	46.7	58.826	
18	P13647;CON_P13647;CON	P13647;CON	11;11;7 Mic	rosoft Excel	1.00	Renative, Spr.		1000							×	20.3	9.3	5.9	62.378	
19	P35527;CON_P35527	P35527;CON	23;23	USUIT EXCEI	100.00	Sanation, Sanat			1		-	-		100		54.3	53.1	53.1	62.064	
20	P35908;CON_P35908;Q015	2 P35908;CON	20;20;3	Der aus	gewählte Dateity	p unterstützt kei	ne Arbeitsmappen	, die mehrere Blät	ter enthalten.							41.8	38.7	30.2	65.432	
21	CON_Q3SZH5	CON_Q3SZ		A Nicker	Sie auf 'OK' we	nn nur das aktue	lle Blatt gespeiche	rt werden soll								1.7	1.7	1.7	45.456	
22	Q5D862;CON_Q5D862	Q5D862;CON	1;1	•Wenn	alle Blätter in die	ser Arbeitsmappe	e in dem ausgewäh	lten Dateityp ges	peichert werden solle	en, wählen Sie j	edes Blatt aus, un	d speichern Sie es als	eigene Datei un	nter unterschied	dlichen Namen,	0.5	0.5	0.5	248.07	
23	Q7Z794;CON_Q7Z794	Q7Z794;CON	2;2	oder wä	ihlen Sie einen Di	ateityp, der mehr	ere Blätter unters	tützt.								3.8	17	1.7		
24	O00148;Q13838	O00148;Q13															1.7		61.901	
25	O00165	000165	1;1						OK	Abbrechen	1					2.3	2.3	2.3	61.901 49.129	
26	000217	000105	1;1	Mar die	en Tofernalisa k	lfueisle?			ОК	Abbrechen						2.3 21.1	2.3 21.1	2.3 21.1	61.901 49.129 31.62	
27	000217	000165	.1;1	<u>War die</u>	se Information h	lfreich?		1	OK	Abbrechen						2.3 21.1 4.3	2.3 21.1 4.3	2.3 21.1 4.3	61.901 49.129 31.62 23.705	
	000264	000165 000217 000264		<u>War die</u>	se Information h	lfreich? 3 Membrane-	e PGRMC1	>sp[c_J0264]	ок	Abbrechen 3	3	3	3	3	3	2.3 21.1 4.3 16.4	2.3 21.1 4.3 16.4	2.3 21.1 4.3 16.4	61.901 49.129 31.62 23.705 21.671	
28	7 000264 000327	000165 000217 000264 000327		<u>War die</u> 3	se Information h 3 1	lfreich? 3 Membrane- 1 Aryl hydroci	€PGRMC1 a ARNTL	>sp 2,00264 >sr_(000327	ок	Abbrechen 3 1	3 1	3 1	3 1	3 1	3	2.3 21.1 4.3 16.4 1.4	2.3 21.1 4.3 16.4 1.4	2.3 21.1 4.3 16.4 1.4	61.901 49.129 31.62 23.705 21.671 68.761	
28 29	000264 000327 000483	000165 000217 000264 000327 000483		War die 3 1	se Information h 3 1 3	lfreich? 3 Membrane- 1 Aryl hydroca 3 NADH dehy	∉PGRMC1 a ARNTL c NDUFA4	>sp Cu0264 >su(000327 >sp 000483	ок 1 1 1	Abbrechen 3 1 3	3 1 3	3 1 3	3 1 3	3 1 3	3 1 3	2.3 21.1 4.3 16.4 1.4 37	2.3 21.1 4.3 16.4 1.4 37	2.3 21.1 4.3 16.4 1.4 37	61.901 49.129 31.62 23.705 21.671 68.761 9.3697	
28 29 30	000217 000264 000327 000483 000487	000165 000217 000264 000327 000483 000487		<u>War die</u> 3 1 3 1	se Information h 3 1 3 1	lfreich? 3 Membrane- 1 Aryl hydroci 3 NADH dehy 1 26S proteas	e PGRMC1 a ARNTL d NDUFA4 c PSMD14	>sp 0.00264 >sp 0.00327 >sp 0.00483 >sp 0.00487	ок [Abbrechen 3 1 3 1	3 1 3 1	3 1 3 1	3 1 3 1	3 1 3 1	3 1 3 1	2.3 21.1 4.3 16.4 1.4 37 4.2	2.3 21.1 4.3 16.4 1.4 37 4.2	2.3 21.1 4.3 16.4 1.4 37 4.2	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577	
28 29 30 31	000254 000327 000483 000487 000487	000165 000217 000264 000327 000483 000487 000571;015	6;4;1	War die 3 1 3 3 4 6;4;1	se Information h	lfreich? 3 Membrane- 1 Aryl hydroca 3 NADH dehy 1 26S proteas ATP-depend	e PGRMC1 a ARNTL d NDUFA4 c PSMD14 d DDX3X;DDX3	>sp 0.00264 >sp 0.00327 >sp 0.00483 >sp 0.00487 >sp 0.00571	ОК 1 1 1 3	Abbrechen 3 1 3 1 6	3 1 3 1 6	3 1 3 1 6	3 1 3 1 6	3 1 3 1 6	3 1 3 1 6	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6	1.7 2.3 21.1 4.3 16.4 1.4 37 4.2 11.6	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243	-
28 29 30 31 32	000264 000264 000327 000483 000487 000571;015523;Q9NQI0 000574;015523;Q9NQI0	000165 000217 000264 000327 000483 000487 000571;0155 014654	56;4;1	War die 3 1 3 5 5	se Information h	Ifreich2 3 Membrane- 1 Aryl hydroca 3 NADH dehy 1 26S proteas ATP-depeno 5 Insulin rece	e PGRMC1 a ARNTL d NDUFA4 c PSMD14 d DDX3X;DDX3 g IRS4	>sp Cu0264 >sp O00327 >sp O00483 >sp O00487 >sp O00571 >sp O14654	ОК 1 1 1 1 3 1	Abbrechen 3 1 3 1 6 6 6	3 1 3 1 6 6 6	3 1 3 1 6 6	3 1 3 1 6 6	3 1 3 1 6 6	3 1 3 1 6 6	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 133.77	
28 29 30 31 32 33	000264 000327 000483 000483 000877 000571;015523;Q9NQI0 014654 014654	000165 000217 000264 000327 000483 000487 000571;015 014654 014681	6;4;1	War die 3 1 3 4 5 5 2	se Information h	Ifreich? 3 Membrane- 1 Aryl hydroca 3 NADH dehy 1 26S proteas ATP-depend 5 Insulin rece 2 Etoposide-i	¢ PGRMC1 a ARNTL d NDUFA4 c PSMD14 d DDX3X;DDX3 ç IRS4 r EI24	>sp 0.00264] >sr 0.00327 >sp 0.00483 >sp 0.00487 >sp 0.00571 >sp 0.14654 >sp 0.14681	ок 1 1 1 1 3 1 1 1	Abbrechen 3 1 3 1 6 6 6 2	3 1 3 1 6 6 6 2	3 1 3 1 6 6 2	3 1 3 1 6 6 6 2	3 1 3 1 6 6 2	3 1 3 1 6 6 2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 133.77 38.964	
28 29 30 31 32 33 34	000264 000237 000483 000487 000487 000687 014654 014654 014681 014734	000183 000217 000264 000327 000483 000487 000571;015 014654 014681 014734	6;4;1	War die 3 1 3 1 6;4;1 5 2	se Information h	Ifreich2 3 Membrane- 1 Aryl hydroca 3 NADH dehy 1 26S proteas ATP-depend 5 Insulin rece 2 Etoposide-i 1 Acyl-coenzy	e PGRMC1 a ARNTL d NDUFA4 c PSMD14 d DDX3X;DDX3 ç IRS4 n EI24 n ACOT8	>sp 00264 >sp 000327 >sp 000487 >sp 000487 >sp 000571 >sp 014654 >sp 014734 >sp 014734	ок 1 1 1 1 1 3 1 1 1 1 1	Abbrechen 3 1 3 1 6 6 6 2 1	3 1 3 1 6 6 6 2 1	3 1 3 1 6 6 2 1	3 1 3 1 6 6 2 1	3 1 3 1 6 6 2 1	3 1 3 1 6 6 2 1	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 133.77 38.964 35.914	
28 29 30 31 32 33 34 35	000264 000264 000287 000483 000487 000571;015523;Q9NQ10 014554 014681 014735 014735	000165 000217 000264 000327 000483 000487 000571;015 014654 014681 014734 014735	56;4;1	War die 3 3 4 5 5 1 2 2 2	se Information h	Ifreich2 3 Membrane- 1 Aryl hydrocd 3 NADH dehy 1 26S proteas ATP-depend 5 Insulin rece 2 Etoposide-i 1 Acyl-coenzy 2 CDP-diacylg	€ PGRMC1 a ARNTL d NDUFA4 c PSMD14 d DDX3X;DDX3 ¢ IRS4 n EI24 n ACOT8 d CDIPT	>sp 00264 >sp 000327 >sp 000487 >sp 000487 >sp 00047 >sp 014654 >sp 014654 >sp 014734 >sp 014735	ОК 1 1 1 1 3 1 1 1 1 1	Abbrechen 3 1 3 1 6 6 6 2 1 1 2 2	3 1 3 1 6 6 6 2 1 2	3 1 3 1 6 6 6 2 1 1 2	3 1 3 1 6 6 2 1 2	3 1 3 1 6 6 2 1 2	3 1 3 1 6 6 2 1 2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 133.77 38.964 35.914 23.539	
28 29 30 31 32 33 34 35 36	000264 000327 000483 000487 000571;015523;Q9NQ10 014654 014681 014735 014735 00478200	000185 000217 000264 000327 000483 000487 000571;015 014654 014681 014734 014735 014880	6;4;1	War die 3 1 5 6;4;1 5 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	se Information h	Ifreich2 3 Membrane- 1 Aryl hydroci 3 NADH dehyi 1 265 proteasi ATP-depent 5 Insulin rece 2 Etoposide-i 1 Acyl-coenzy 2 CDP-diacylg 2 Microsomal	¢ PGRMC1 a ARNTL c NDUFA4 c PSMD14 d DX3X;DDX3 ç IRS4 r EI24 r ACOT8 d CDIPT (MGST3	>sp 0.00264 >st 0.00327 >sp 0.00483 >sp 0.00487 >sp 0.00487 >sp 0.14654 >sp 0.14654 >sp 0.14734 >sp 0.14735 >sp 0.14880	ок 1 1 1 1 3 1 1 1 1 1 1 1	Abbrechen 3 1 3 1 6 6 6 2 2 1 1 2 2 2 2 2 2	3 1 3 1 6 6 2 1 1 2 2 2 2	3 1 6 6 2 1 2 2 2	3 1 3 1 6 6 6 2 1 2 2 2 2	3 1 3 1 6 6 2 1 2 2 2	3 1 3 1 6 6 6 2 1 2 2 2 2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 133.77 38.964 35.914 23.539 16.516	
28 29 30 31 32 33 34 35 36 37	000264 000327 000483 000487 000571;015523;Q9NQI0 004654 014681 014734 014734 014735 014735 014880 014735	000217 000264 000327 000483 000487 000571;015 014654 014681 014735 014880 014910;09N	6;4;1 2;1;1	War die 8 1 3 5 6;4;1 5 2 1 2 2;1;1 7 7 7 7	se Information h	Ifreich2 3 Membrane- 1 Aryl hydroci 3 NADH dehyi 1 265 proteasi ATP-depend 5 Insulin rece 2 Etoposide-ii 1 Acyl-coenzy 2 CDP-diacylg 2 Microsomal Protein lin-	₹ PGRMC1 a ARNTL c PSMD14 c PSMD14 d DDX3x;DDX3 ç IRS4 r EI24 r ACOT8 i (CDIPT i (MGST3 7 LIN7A;LIN7C;	>sp 0.00264 >su 000327 >sp 000483 >sp 000487 >sp 000487 >sp 014654 >sp 014681 >sp 014734 >sp 014734 >sp 014734 >sp 014735 >sp 014880 >sp 014920	ок 1 1 1 1 3 1 1 1 1 1 1 1 3 3	Abbrechen 3 1 3 1 6 6 6 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 3 1 6 6 2 1 1 2 2 2 2 2	3 1 3 1 6 6 2 1 2 2 2 2 2 2	3 1 3 1 6 6 2 1 1 2 2 2 2 2 2	3 1 3 1 6 6 2 1 2 2 2 2 2 2	3 1 3 1 6 6 2 1 2 2 2 2 2 2 2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 (1.7)	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 (17)	2.3 21.1 4.3 16.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 (1)2	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 133.77 73.243 133.77 38.964 35.914 23.539 16.516 25.996	
28 29 30 31 32 33 34 35 36 37 38	000264 00027 000483 000487 000571;015523;Q9NQI0 014654 014734 014734 014735 014880 014910;Q9NUP9;Q9HAP6 014910;Q9NUP9;Q9HAP6	000217 000264 000327 000483 000487 000571;015 014654 014654 014735 014735 014880 014910;09N 014925;05S	2;1;1 2;1;1 7;5	War die 3 1 3 6;4;1 5 2 2 2 2 2;1;1 7;5 1 1 2 2 1 2 2 1 1 2 1 1 5 1 1 1 1 1 1	se Information h	Ifrech2 3 Membrane- 1 Aryl hydroca 3 NADH dehy 1 265 proteas: ATP-depend 5 Insulin rece 2 Etoposide-i 1 Acyl-coenzy 2 CDP-diacylg 2 CDP-diacylg 2 Microsomal Protein lin- Mitochondr	 PGRMC1 a ARNTL c NDUFA4 c PSMD14 d DDX3x;DDX3 ; IRS4 r EI24 r ACOT8 d CDIPT ; MGST3 7 LIN7A;LIN7C; i TIMM23;TIM 	>sp 0.00264 >sp 0.00327 >sp 0.00483 >sp 0.00483 >sp 0.00487 >sp 0.04654 >sp 0.14654 >sp 0.14734 >sp 0.14735 >sp 0.14735 >sp 0.14735 >sp 0.14800 >sp 0.14910 >sp 0.14925	ок 1 1 1 1 1 1 1 1 1 1 1 1 1	Abbrechen 3 1 3 1 6 6 6 6 2 1 1 2 2 2 2 2 2 7 7	3 1 3 1 6 6 6 2 1 2 2 2 2 2 2 2 2 7 7	3 3 1 6 6 2 1 2 2 2 2 7 7	3 1 3 1 6 6 6 2 1 2 2 2 2 7 7	3 1 3 1 6 6 2 1 2 2 2 2 2 7	3 1 3 1 6 6 6 2 1 2 2 2 2 2 2 7 7	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 9.2 2.2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 9	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 2.8 11.3 17.8 9 6.17 9	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 133.77 38.964 35.914 23.539 16.516 25.996 21.943	
28 29 30 31 32 33 34 35 36 37 38 39	000264 00027 000483 000487 000571;015523;Q9NQl0 014654 014681 014735 014735 014735 014880 014910;Q9NUP9;Q9HAP6 014925;Q5SRD1 014966;P57729;Q13637	000217 000254 000327 000483 000571;015 014654 014681 014734 014735 014880 014910;Q9N 014925;Q5S 014966 014927	6;4;1 2;1;1 7;5 4;1;1	War die 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	se Information h	Ifrech2 3 Membrane- 1 Aryl hydroca 3 NADH dehy 1 265 proteas 4 ATP-depend 5 Insulin rece 2 Etoposide-i 1 Acyl-coenzy 2 CDP-diacylg 2 Microsomal Protein lin- Mitochondr Ras-related Colenaci	<pre> PGRMC1 ARNTL CNDUFA4 CPSMD14 DDX3X;DDX3 FIR54 EI24 COIPT (MGST3 TUN7A;UN7C; TIMM23;TIM [RA87L1 COIPT COIPT</pre>	>sp 00264 >sp 000327 >sp 000483 >sp 000487 >sp 014654 >sp 014654 >sp 014684 >sp 014734 >sp 014734 >sp 014734 >sp 014734 >sp 014800 >sp 014925 >sp 014925	ок 1 1 1 1 3 1 1 1 1 1 1 1 1 3 2 3 1	Abbrechen	3 1 3 1 6 6 2 1 1 2 2 2 2 7 7 4	3 1 3 1 6 6 6 2 1 1 2 2 2 7 7 4	3 1 3 1 6 6 6 2 1 2 2 2 2 7 4 4	3 1 3 1 6 6 6 2 1 2 2 2 2 7 4	3 1 3 1 6 6 2 1 2 2 2 2 7 4	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 2.3,2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 22.2 2	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 38.964 35.914 22.539 16.515 25.996 21.943 22.155 76.025	
28 29 30 31 32 33 34 35 36 37 38 39 40	000264 000327 000483 000487 000571;015523;Q9NQI0 1014654 014681 014735 014735 014735 014735 014910;Q9NUP9;Q9HAP6 01492;Q5RD1 014966;P57729;Q13637 014967 014967	000165 000217 000264 000327 000483 000487 000571;015 014654 014681 014735 014735 014735 014910;09N 014925;05S 014966 014967 014902	2;1;1 2;1;1 2;1;1 7;5 4;1;1	War de 3	se: Information h	ifrech2 3 Membrane- 1 Aryl hydroci 3 NADH dehy 1 265 proteas 1 ArD-depen 5 Insulin rece 2 Etoposide-i 1 Acyl-coenzy 2 CDP-diacylg 2 Microsomal Protein lin- Mitochondr Ras-related 1 Camegin	E PGRMC1 a ARNTL CNDUFA4 c PSMD14 d DDX3X;DDX3 g IRS4 i CDIPT i MCOT8 i CDIPT i MMCST3 7 LIN7A; JUN7C; i TIMM23;TIM I RAB7L1 CLGN	>>p100284 >>p000327 >>p000437 >>p100483 >>p104654 >>p104654 >>p1044634 >>p1044634 >>p1044631 >>p1044634 >>p1044631 >>p1044631 >>p1044631 >>p1044961 >>p1044961 >>p1044961	ок 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	Abbrechen 3 1 3 1 6 6 6 2 2 2 2 2 2 2 2 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 3 1 6 6 2 1 2 2 2 2 2 7 7 4 1	3 1 3 1 6 6 2 1 2 2 2 2 7 4 4 1	3 1 3 1 6 6 2 1 1 2 2 2 7 7 4 1	3 1 3 1 6 6 2 1 1 2 2 2 7 7 4 1	3 1 3 1 6 6 2 1 2 2 2 2 7 4 1	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8	2.3 21.1 4.3 16.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8	61.901 49.129 31.62 23.705 21.671 9.3697 34.577 73.243 35.914 133.77 38.964 35.914 23.539 16.516 25.996 21.943 21.555 70.038	
28 29 30 31 32 33 34 35 36 37 38 39 40 41	000264 00027 000483 000487 000487 00487 014554 014554 014734 014735 014910;Q9NUP9;Q9HAP6 014925;Q5SRD1 01496;P57729;Q13637 014967 014980 01530	000125 000217 00024 000327 000483 000571;015 014654 014651 014735 014735 014735 014735 014735 014735 014735 014736 014736 014925;QSS 014967 014980	2;1;1 2;1;1 2;1;1 4;1;1	War die 3 1 6;4;1 5 4;1;1 2 2;1;1 7;5 4;1;1 1 2	ee Information h	Ifrech? 3 Membrane- 1 Aryl hydroc: 3 NADH dehy 1 265 proteas ATP-depent 5 Insulin rece 2 Etoposide-1 2 Etoposide-1 2 CDP-diarylg 2 CDP-diarylg 2 Microsomal Protein lin- Mitochondr Ras-related 1 Calmegin 1 Exporti-1 1 Sporte-1	e PGRMC1 A ARNTL A NDUFA4 C PSMD14 d DDX3X;DDX3 f IRS4 if CDIPT 1 (MGST3 7 LIN7A;LIN7C; i TIMM23;TIM JRAB7L1 CLGN XPD1 XPD1 XCD17 XCD1	>>p [000264] >>p (000327] >>p (000437] >>p (000487] >>p (014874] >>p (014734] >>p (014734] >>p (014734] >>p (014735] >>p (014735] >>p (014910] >>p (014910] >>p (0149166] >>p (014966] >>p (014966] >>p (014966] >>p (014980]	ОК 1 1 1 1 1 1 1 1 1 1 1 1 1	Abbrechen 3 1 3 1 6 6 6 2 2 2 2 2 2 2 2 4 1 1 1 2 2 2 2 7 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 3 1 6 6 6 2 1 2 2 2 2 7 7 4 1 1 2	3 3 1 6 6 2 1 2 2 2 2 7 4 1 1 1 2	3 1 3 1 6 6 6 2 1 2 2 2 2 2 7 4 1 1 1	3 1 3 1 6 6 2 1 2 2 2 2 7 7 4 1 1 2	3 1 3 1 6 6 2 1 2 2 2 2 7 7 4 1 1 2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 9 61.7 23.2 1.8 1.1 2.4	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 6.1.7 23.2 1.8 1.1	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8 1.1	61.901 49.129 31.62 23.705 21.671 68.761 9.3697 34.577 73.243 38.964 33.914 23.539 43.516 25.996 21.943 23.155 25.996 21.943 23.1555 23.1555 23.1555 23.1555 23.15555 23.1555557 23.15555575755	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	000264 00027 000483 000487 000571;015523;Q9NQI0 014554 014734 014734 014735 014880 014910;Q9NUP9;Q9HAP6 014910;Q9NUP9;Q9HAP6 014925;Q5SRD1 014966;P57729;Q13637 014980 014980 015358	000163 000217 00024 000327 000483 000487 000487 014681 014681 014734 014735 014880 014910;09N 014925;055 014966 014926;0159 014980	2;1;1 2;1;1 7;5 4;1;1	War die 3 5 6;4;1 5 2 2 2;5;1 7;5 4;1;1 1 2 2 3 4;1;1 1 2 2 3 4;1 1 7;5 4;1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	se Information h	Ifreich2 3 Membrane- 1 Aryl hydroc: 3 NADH dehy 1 265 proteas ATP-depend 5 Insulin rece 2 Etoposide-1 2 Etoposide-1 2 Etoposide-1 2 Etoposide-1 9 Protein In-1 Mitochondr Ras-related 1 Calmegin 1 Exportin-1 2 Lacyl-sngl	2 PGRMC1 a ARNTL d NDUFA4 c PSMD14 d DDX33; DDX3 i IR54 i ACOT8 i CDIPT i MGST3 v IN7A; LIN7C; i TIMM23; TIM (RAB7L1 cLGN xPO1 xPO1 y AGPAT2 1 EEP1	>sp p00264 >sp 000327 >sp 000437 >sp 000437 >sp 00487 >sp 014631 >sp 014734 >sp 014734 >sp 014734 >sp 01480 >sp 014925 >sp 014925 >sp 014926 >sp 014925 >sp 014925	ок 1 1 1 1 1 1 1 1 1 1 1 1 1	Abbrechen 3 1 1 3 1 6 6 6 1 1 2 2 2 7 7 4 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 3 1 6 6 6 2 1 1 2 2 2 2 7 7 4 1 1 2 1	3 3 1 6 6 2 1 2 2 2 7 4 1 1 1 2	3 1 3 1 6 6 6 2 1 1 2 2 2 7 4 1 1 1 2 2	3 1 3 1 6 6 6 2 1 2 2 2 2 7 4 1 1 1 2	3 1 3 1 6 6 7 1 2 2 2 7 7 4 1 1 1 2	2.3 2.1.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8 1.1 9,4 5.6	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8 1.1 9,4 4.2 1.1 9,5 6.2 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8 9 61.7 23.2 1.1 9,4 4.2 1.1 9,5 61.7 23.2	61.901 49.129 31.62 23.705 21.671 9.3697 34.577 73.243 133.77 38.964 73.243 133.77 38.964 23.539 16.516 25.996 21.943 23.155 70.038 20.914 23.38 30.914	
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	000264 000264 000327 000483 000571;015523;Q9NQ10 014654 014681 014735 014735 014880 014910;Q9NUP9;Q9HAP6 014925;Q5SRD1 014966;P57729;Q13637 014967 014967 014980 015120 015228 015228	000135 000217 000247 000487 000487 000487 014681 014681 014735 014735 014735 014735 014735 014735 014735 014925,028 014925 014926 014925 014926 014925 014926	2;1;1 2;1;1 7;5 4;1;1	War die 3 3 6;4;1 2 2;1;1 1 2 2;1;1 1 1 2 2 3 4;1;1 1 1 2 2 3 4;1;1 1 3 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5	se Information h	ifrech2 3 Membrane- 1 Aryl hydroc; 3 NADH dehy 1 65 proteas ATP-depend 5 Insulin rece 2 Etoposide-i 1 Acyl-coenzy 2 CDP-diacylg 2 Microsomal Protein lin- Mitochondr Ras-related 1 Calmgin 1 Exportin-1 2 1-acyl-sn-gl 9 Protein RER	PGRMC1 ARNTL CNUFA4 CPSMD14 DDX3X;DDX3 IFIS4 DDX3X;DDX3 IFIS4 CDIPT MGST3 TUN7A;LIN7C; ITMM23;TIN RAP11 CLGN XPO1 yAGPAT2 IREN1 cUDP4	>spl 0:0264 >sp 0:00327 >sp 0:00437 >sp 0:00437 >sp 0:00437 >sp 0:00437 >sp 0:00437 >sp 0:014735 >sp 0:14734 >sp 0:14735 >sp 0:14735 >sp 0:14430 >sp 0:14925 >sp 0:14926 >sp 0:15208 >sp 0:15258	ок 1 1 1 1 1 1 1 1 1 1 1 1 1	Abbrechen 3 1 3 1 6 6 6 2 1 2 2 2 2 2 2 4 1 1 1 2 1 1 1 2 1 1 1 1	3 1 3 1 6 6 6 2 1 1 2 2 2 2 7 7 4 1 1 2 2 7 7 4	3 1 3 1 6 6 2 1 2 2 2 2 2 7 4 1 1 2 2 2 7 4 1 1 2 1 2 2 7 4 1 1 3 1 3 1 3 1 1 6 6 6 7 2 1 2 2 2 2 2 7 7 1 1 3 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 3 1 6 6 6 7 1 2 2 2 7 7 4 1 1 2 1 1 2	3 1 3 1 6 6 6 2 1 2 2 2 7 7 4 1 1 2 2 7 4 1	3 1 3 1 6 6 2 1 2 2 2 2 7 7 4 1 1 2 2 1 1 2	2.3 2.1 1.1 1.4 1.4 1.4 1.4 1.4 1.4 2.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8 9 61.7 23.2 1.1 9,4 5.6 5.9 9	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 6.1.7 23.2 1.8 1.1 1.1 9,4 5.6	2.3 21.1 4.3 16.4 1.4 37 4.2 11.6 6.6 5.9 2.8 11.3 17.8 9 61.7 23.2 1.8 1.1 1.1 9.4 5.6	61.901 49.129 31.62 23.705 21.671 9.3697 34.577 33.969 34.577 33.964 35.914 23.539 16.516 25.996 21.943 23.155 70.038 123.345 21.943 23.155	

Back to Perseus - Data upload

:	C:\Users\Annette\Desktop\proteinGroupsVBA.txt		Select
	Earta haadeer	A Furnessian	
	Number of proteins	- Expression	
	Dentides 1	> Ratio M/L normalized	t
	Pepudes 1	Ratio H/L normalized	
	Razor + unique peptides 1	Ratio H/M normalized	
	Converse length		d
	Sequence length		Б
	Sequence lengths		
	Fraction average		
	Fraction 2		
	Fraction 2	Numerical	
	Identification type 1	> PEP	× +
	Ratio M/I	Sequence coverage [%]	
	Patio M/L variability (%)	Unique + razor sequence coverage [%]	u
	Ratio M/L count	Unique sequence coverage [%]	≡d
	Ratio M/L iso-count	Mol. weight [kDa]	
	Ratio M/L type	Peptides	b
	Patio H/L	Razor + unique peptides	
	Rauo n/L	Unique pantidar	Ŧ
	Ratio H/L count	Categorical	
	Patio H/L ico count	Calvidentified by site	
	Patia U/L tura	S Only identified by site	<u>t</u>
	Ratio H/L type	< Detection contraction to	u
	Ratio H/M		
	Ratio H/M sound		a
	Ratio H/M count		b
	Ratio H/M iso-count		
	Ratio H/W type		
	Ratio M/L I	Taut	
	Ratio IVI/L normalized 1	Text	
	Ratio IVI/L Variability [76] 1	> Protein IDs	t
	Ratio M/L count 1	Majority protein IDs	
	Ratio IVI/L Iso-count 1	Protein names	, in the second s
	Ratio IV/L type 1	Gene names	d
	Ratio H/L I		h
	Ratio H/L normalized 1		<u> </u>
	Ratio H/L variability [76] 1		
	Ratio H/L count 1		
	Ratio H/L type 1	Multi-numerical	
	Patio H/M 1	> id	t
	Patio H /M normalized 1	Peptide IDs	
	Patio H/M variability (9/11	Peptide is razor	u
	Ratio H/M count 1	Mod. peptide IDs	d
	Ratio H/Mico count 1	Evidence IDs	
	Ratio H/M Iso-count 1	MS/MS IDs	
	Sequence coverage 1 [%]	v	
	Shorten expression column names		
cel	Descr	iption	CK OK

Now you have to define which data columns should be imported into Perseus. You must also define which type of data each column contains.

Data is added or removed by clicking on the respective buttons.

There are five data types:

1. Expression data

= H/L-ratios, Labelfree quantification values, Isobariclabel intensities etc.

There are five data types:

3. Categorical data

This is a yes or no data. Every protein group that belongs to a certain category is marked with a plus (+). MaxQuant automatically assigns some of the identified protein groups to three categories:

- 1. Only identified by site
- 2. Potential contaminant
- 3. Reverse

There are five data types:

4. Text data = Everything that is not a number e.g. Protein IDs (Accession), Protein names, Gene

There are five data types:

5. Multi-numerical data = Every column that contains more than one single number. Usually these numbers are separated by a semicolon. Examples are the different ID-Columns with link to other files generated by MaxQuant (MS/ MS-lists etc.)

Data is imported into Perseus in a so-called **matrix**.

2101	Session1 - Pe	erseus			-			_							
•	Matrix														도 🗘 🗘 💭
1 🤏	Basic 🔹	Filter	r rows •	Annot. columns	 Imputati 	on • C	lusterin	🥶 p	2 Visuali	ization •	井 태 🖂	🔐 Bas	ic •		
E 🖸	Rearrange •	Filter	r columns 🔹	Annot. rows •	Modifie	1(X	S 🗠 💶 Z	7 x p	Cluste	ring/PCA •	- 🕸 🥯 🖊	0	8		
- 19	Normalizatio	on • Qual	lity •	Tests	Proteom	ic ruler 🔹 🛄	∎≪∽1	D 20 P1 🖌	Misc.	•	, 				
Load	-			Processi	ng					Analy	/sis	1.1	Multi-proc.	Export	
matrix1														i 🗹 🖑 🛪 🗣 🏦 🖺 🚬	4 matrix1
Data													4 >		02/18/2015 18:02:58
	Α	в	С	Only	Reverse	Potential	Q-value	Score	Intensity	Intensity	Intensity H	Peptides	Peptides	Generic matrix u	Origin: D:\SILAC Workshop 2015\combined\txt\ File: proteinGroups txt
				by site						- -	<u> </u>				Quality: (small values are good.)
Type	Expres	Expres	Expression	Catego	Catego	Catego	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	matrix1	Rows (1628)
1	NaN	NaN	0.80343				0	4.0745	188920	9885200	9006800	0	0		 Categorical columns (3)
2	NaN	0.50649	0.04703				0.0034	6.6692	021260	667470	262790	1	5		 String columns (4) Numerical columns (17)
1	NaN	NaN	1 1326				0	14 438	968950	496020	472930	0	1		 Multi-numerical columns (8)
5	NaN	NaN	NaN				0.0014	1.9054	960480	832250	128230	0	1	Matrix-tree	Categorical rows (0)
6	NaN	NaN	NaN				0.0078	1.1743	1918800	1124800	793970	1	0	IVIALITA-LICC	Numerical rows (0)
7	NaN	NaN	NaN				0	5.6441	1161600	1156300	5326.8	0	0	Window (lists all	Matrix-Info
8	NaN	NaN	NaN				0.0095	0.99659	254400	254400	0	0	0		
9	NaN	NaN	NaN	Datat	ahle		0.0077	1.1381	128280	128280	0	0	0	matrices	Window (contains
10	NaN	0.33634	0.5571	Dutut			0	4.9443	374210	305720	6849100	0	2		
11	NaN	NaN	0.14989	Wind	low		0	26.421	296510	251130	4537400	0	2	contained in a	information
12	NaN	NaN	NaN				0	21.108	8887900	5066000	3821900	0	1		
13	NaN	NaN	0.75698				0	3.1953	135380	8140000	5397600	0	0	Perseus project)	about the
14	0.60601	1.0407	0.7331				0	57.426	663490	420780	242710	7	4		currently colocted
15	NaN	NaN	NaN				0	4.5381	3446500	1936500	1510000	0	0		currently selected
16	0.0810	3.3769	1.283				0	191.38	464670	254420	210260	20	25		matrix)
17	NaN	NaN	NaN				0.0094	0.94881	7212000	2895100	4316900	0	0		matrixy
18	NaN	NaN	0.59947				0	4.8189	124850	7841100	4643800	0	0		
20	1.0224	0.46720	0.67219				0	9/ /0/	446610	425040	126290	2	6		
20	NaN	NaN	NaN				0.0014	1 7605	1550900	1295900	254970	0	1		
22	NaN	NaN	0.037928				0	54.024	5748300	5706900	41385	0	0		
23	NaN	NaN	0.88542				0	2.965	6351000	3160500	3190500	0	0		
24	NaN	NaN	0.90245				0	5.0359	193560	134310	5924700	0	1		
25	NaN	2.0667	NaN				0	4.787	266540	102710	163830	1	3		
26	NaN	NaN	0.61849				0	5.9197	104520	6450000	4002100	0	0		< III >
27	NaN	NaN	1.4144				0	3.3244	103470	4940000	5407100	0	0		
28	0.96779	0.39904	NaN				0	3.0785	100530	850920	154400	2	2		
29	0.97586	0.90167	0.81699				0	202.54	213370	132590	807790	13	26		
30	NaN	NaN	NaN				0	2.6081	5259800	3040000	2219800	0	0		
31	0.84727	0.60973	0.36602				0	20.291	100360	713550	290030	4	4		
32	NaN	NaN	2.8061				0.0014	1.6726	117460	386590	787980	1	1		
1628 item	s				y										
														al	

Every time you change something a new **matrix** is created. This way you can always go back to a previous processing stage.

2 I 🗆 I I	Session1 - Pe	erseus				-							-	1		
-	Matrix															R. 🗢 🛱
1 🧐	Basic 🔹	Filter	rows • Anno	t. columns a	putatio	on• C	lustering •	🤐 P.	2 Visuali	zation •	2 388 추	🔬 Bas	ic •			
Ξ.	Rearrange •	Filter	columns • Appe	-ows •	Modifica	tions • f()	K 🗹 🎫 Z	7 x p	Cluste	ring/PCA •	🖄 🕥 💆	0				
194 194	Normalizatio	on • Qual	ity • Tests	•	Proteom	ic ruler 🔹 🚺	∎ <i>∛</i> 🗠 1I	D 2D Pi 🖊	Misc.		기 년 🖉					
Load				Processing	9					Analy	sis	1.1	Multi-proc.	Exp	port	
matrix1													4		💽 🖑 🔪 🕈 🛣 🗟 🚬	4 matrix1
Data													4			02/18/2015 18:02:58
	A	В	С	Only identifi by site	Reverse	Potential contam	Q-value	Score	Intensity	Intensity L	Intensity H	Peptides A	Peptides B		Genericu ix u	Origin: D:\SILAC Workshop 2015\combined\txt\p File: proteinGroups.txt
Туре	Expres	Expres	Expression	Catego	Catego	Catego	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric		matrix1	Rows (1628)
1	NaN	NaN	0.80343				0	4.0745	188920	9885200	9006800	0	0			Expression columns (3)
2	NaN	NaN	0.64703				0.0034	1.4653	183450	124320	5912800	0	1			 Categorical columns (3) String columns (4)
3	NaN	0.50649	0.81553				0	6.6682	931260	667470	263780	1	5			Numerical columns (17)
4	NaN	NaN	1.1326				0	14.438	968950	496020	472930	0	1		••••	Categorical rows (0)
5	NaN	NaN	NaN				0.0014	1.9054	960480	832250	128230	0	1		Matrix-tree	Numerical rows (0)
6	NaN	NaN	NaN				0.0078	1.1743	1918800	1124800	793970	1	0		Window (lists all	
7	NaN	NaN	NaN				0	5.6441	1161600	1156300	5326.8	0	0		window (lists all	iviatrix-info
8	NaN	NaN	NaN		- 1- 1 -		0.0095	0.99659	254400	254400	0	0	0		matrices	Window (contains
9	NaN	NaN	NaN D	ατατά	able		0.0077	1.1381	128280	128280	0	0	0		matrices	
10	NaN	0.33034 NoN	0.5571	Vind	0.44		0	4.9443	206510	305720	4527400	0	2		contained in a	information
12	NaN	NaN	0.14969 V	VIIIG	UW		0	20.421	290510	5066000	3921000	0	1		contained in a	mormation
13	NaN	NaN	0.75698				0	3 1953	135380	8140000	5397600	0	0		Perseus project)	about the
14	0.60601	1 0407	0.7331				0	57 426	663490	420780	242710	7	4		· · · · · · · · · · · · · · · · · · ·	
15	NaN	NaN	NaN				0	4.5381	3446500	1936500	1510000	0	0			currently selected
16	0.0810	3.3769	1.283				0	191.38	464670	254420	210260	20	25			· · · ·
17	NaN	NaN	NaN				0.0094	0.94881	7212000	2895100	4316900	0	0			matrix)
18	NaN	NaN	0.59947				0	4.8189	124850	7841100	4643800	0	0			
19	NaN	NaN	NaN				0	3.4842	513390	425040	8834400	0	2			
20	1.0224	0.46729	0.67218				0	84.494	446610	320330	126280	3	6			
21	NaN	NaN	NaN				0.0014	1.7605	1550900	1295900	254970	0	1			
22	NaN	NaN	0.037928				0	54.024	5748300	5706900	41385	0	0			
23	NaN	NaN	0.88542				0	2.965	6351000	3160500	3190500	0	0			
24	NaN	NaN	0.90245				0	5.0359	193560	134310	5924700	0	1			
25	NaN	2.0667	NaN				0	4.787	266540	102710	163830	1	3			
26	NaN	NaN	0.01849				0	5.9197	104520	6450000	4002100	0	0			× >
21	0.06770	0.20004	1.4144 NoN				0	2.0795	103470	4940000	154400	2	2			
20	0.90779	0.990167	0.81699				0	202 54	213370	132590	807790	4	26			
30	NaN	NaN	NaN				0	2.6081	5259800	3040000	2219800	0	0			
31	0.84727	0.60973	0.36602				0	20.291	100360	713550	290030	4	4			
32	NaN	NaN	2.8061				0.0014	1.6726	117460	386590	787980	1	1			
1628 item	s															
																Version 1.5.1.6

The Datatable Window

Each column contains one type of data like SILAC ratios, sequence coverage, peptide numbers,...

			1																			1
		Data																				
Data type (as			A	В	С	Only identifi by site	Reverse	Potential contam	Q-value	Score	Intensity	Intensity L	Intensity H	Peptides A	Peptides B	Peptides C	Razor + unique peptides	Razor + unique peptides	Razor + unique peptides	Unique peptides A	Unique peptides B	Unique peptides C
defined during —		Туре	Expres	Expres	Expression	Catego	Catego	Catego	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric
unload)		33	NaN	NaN	0.30486				0	8.1199	2024900	1443800	581170	0	0	4	0	0	4	0	0	3
upioau)		34	1.8203	2.4858	0.50199				0	42.051	639440	322480	316960	5	4	5	5	4	5	5	4	5
		35	NaN	NaN	NaN				0	6.2465	394760	146850	247910	0	0	1	0	0	1	0	0	1
		36	0.90953	0.64613	1.0638				0	194.74	262310	154310	108010	16	16	25	16	16	25	16	16	25
		37	NaN	0.43303	0.86671				0	14.748	787510	452480	335030	1	1	2	1	1	2	1	1	2
		38	NaN	NaN	NaN				0	3.2351	372240	312520	5972300	0	1	0	0	1	0	0	1	0
		39	NaN	NaN	NaN				0	2.4933	855680	704330	151350	0	1	0	0	1	0	0	1	0
		40	NaN	NaN	NaN				0.0094	0.98022	4456000	4279700	176340	0	0	1	0	0	1	0	0	1
		41	NaN	NaN	NaN				0	15.506	445940	254500	191440	7	5	6	1	0	1	0	0	0
		42	NaN	NaN	1.1/88				0	7.0117	353700	1/0680	183020	0	0	2	0	0	2	0	0	2
		43	NaN	NaN	2.0128				0	2.6325	7071000	2341600	4729400	0	0	2	0	0	2	0	0	2
		44	NaN	0.51979	1.2100				0	0.7233	247230	108900	7820800	0	2	2	0	2	2	0	2	2
		40	NaN	0.53144 NoN	2.0496				0	4.1007	104290	299000	126020	0	2	2	0	2	2	0	2	2
		40	0.59303	0.32887	0.50644				0	22 391	686870	550940	135930	2	3	2	2	3	2	2	3	3
Each row contains		48	0.85755	1.114	NaN				0	3.6129	195420	108570	868580	1	1	1	1	1	1	1	1	1
one identified	ור	49	NaN	NaN	1.0721				0	4.066	230570	120950	109620	1	0	2	1	0	2	1	0	2
one identified		50	0.75695	3.3265	0.83447				0	82.637	104120	521480	519760	5	8	5	5	8	5	5	8	5
protein group		51	1.0146	0.6911	0.52887				0	14.384	137620	904860	471340	2	3	4	2	3	4	2	3	4
proteingroup		52	0.88658	1.0667	0.67661				0	47.706	138550	863300	522210	2	3	3	2	3	3	2	3	3
		53	1.0051	0.42981	0.54816				0	52.193	281620	208570	730410	2	5	3	2	5	3	2	5	3
		54	NaN	NaN	0.68491				0	7.23	7553200	4582300	2970900	0	0	1	0	0	1	0	0	1
		55	NaN	0.72979	NaN				0.0054	1.3152	1935500	1330700	604750	0	1	0	0	1	0	0	1	0
		56	1.0455	8.4935	1.2727				0	62.976	482640	216930	265710	3	4	9	2	3	8	2	3	8
		57	NaN	NaN	NaN				0	4.2367	2524200	969840	1554300	0	0	1	0	0	1	0	0	1
		58	NaN	NaN	NaN				0	12.424	9841100	4284900	5556200	1	0	1	1	0	1	1	0	1
		59	1.0577	0.44189	0.79827				0	96.342	139260	108540	307130	6	10	6	6	10	6	6	10	6
		60	NaN	0.45482	NaN				0	4.3987	5159100	3960300	1198800	0	3	0	0	3	0	0	3	0
		61	NaN	NaN	NaN				0	4.1784	131890	8631300	4557500	0	0	1	0	0	1	0	0	1
		62	1.33	0.5061	0.80206				0	9.0007	146260	110930	353340	2	4	2	2	4	2	2	4	2
		63	NaN	NaN	1.297				0.0014	1.8653	8683400	6083500	2599900	0	1	1	0	1	1	0	1	1
		h4	NaN	MaN	NaN					99793	6522600	4676000	1846700						1	0	0	
		1628 items	1 selected																			ſ

Protein group???

- MaxQuant does not give you single protein identifications, but so-called protein groups.
- A group contains all the proteins and protein isoforms (present in the searched database), which can be explained by a given set of identified peptides.

Before processing the data further, first <u>save</u> the Perseus project.

	bession1 - I	Perseus							- 14 h		Table Inc.			and had it.	
-															R. 🗘 🗭
	Sav	e					2 p2 7 x p1	Visualizati Clustering Misc 🔹	on • 44 //PCA • 🎊	i 課 ⊵ "∥ So ¥ (7 C	Basic •		•		
Load	Sav	e as		—				inise.	Analysis		Mult	ti-proc.	Export		
matrix1 Data	Sav	e as PDF							Anaysis			a proc.) · • • • • • • • • • • • • • • • • • •	matrix1 Creator: Annette 02/16/2015 10:23:44
	Op	en					Unique + razor sequen	Unique sequen covera	Mol. weight [kDa]	Peptides	Razor + unique peptides	Unique peptides	Prot	Generic matrix u	Origin: C:\Users\Annette\Desktop\proteinGroupsVBA.txt File: proteinGroupsVBA.txt Quality: (small values are good.)
Туре	NEW! Nev	N					Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Text	matrix1	Rows (553)
1							NaN	NaN	NaN	NaN	NaN	NaN	Т		Expression columns (3) Categorical columns (3)
2	Nev	w window					4.7	4.7	102.36	4	4	4	A0F		String columns (4)
3	**						4.8	4.8	36.547	1	1	1	A2R		 Numerical columns (8) Multi-numerical columns (6)
4	Anr 😽	notation down	nload				0.7	0.7	382.3	1	1	1	A4U		Categorical rows (0)
D	.						0.0	0.0	200.94	1	1	1	ADY D07		Numerical rows (0)
7	Hel	р					10.9	10.9	102.75	1	1	1	P11		
8							4.3	4.3	34.466	1	1	1	ASM		
9							1.9	1.9	46.962	1	1	1	A8M		
10	INAIN	INAIN	Nan		- 1./E-U0	1.8	7.8	7.8	24.409	2	2	2	100		
11	0.11321	0.36557	1.125	+	• 2.56E	32.6	27.3	16.7	51.561	13	9	5	P02		
12	2.259	0.20286	0.40328	+	• 1.87E	27	18.1	1.8	60.044	13	8	1	P02		
13	NaN	NaN	NaN	+	+ 1.31E	11.1	11.1	11.1	22.975	2	2	2	100		
14	NaN	NaN	NaN	+	► 0.0006	8.6	8.6	8.6	18.281	1	1	1	100		
15	NaN	NaN	NaN	+	+ 9.7E-60	26.6	10.8	10.8	51.267	11	3	3	P08		
16	0.0636	0.0748	15.765	+	+ 5.01E	53.1	53.1	46.7	58.826	28	28	22	P13		
17	0.16413	8 0.75705	12.778	+	+ 1.35E	20.3	9.3	5.9	62.378	11	5	3	P13		
18	0.11225	6 0.20776	1.154	+	► 3.47E	54.3	53.1	53.1	62.064	23	22	22	P35		
19	0.0903.	0.12433	1.4228	+	• 1.12E	41.8	38.7	30.2	65.432	20	18	13	P35		
20	NaN	NaN	NaN	+	• 0.0233	1.7	1.7	1.7	45.456	1	1	1	100		
21	NaN	NaN	NaN	+	• 0.0022	0.5	0.5	0.5	248.07	1	1	1	Q5D		
22	NaN	NaN	NaN	+	3.74E	3.8	1.7	1./	01.901	2	1	1	0/2		
23	1 1107	2 4 1 2 9	2 5922		1.205	2.3	2.3	2.3	49.129	5	5	5	000		
24	NaN	NaN	NaN		0.0001	4.3	43	4.3	23 705	1	1	1	000		
26	0 74490	0.91574	1 1054		1.46F-	16.4	16.4	16.4	21.671	3	3	3	000		
27	NaN	NaN	NaN		0.0249	1.4	14	1.4	68 761	1	1	1	000		
28	0.87934	1.0377	0.91532		3.73E	37	37	37	9.3697	3	3	3	000		
29	NaN	NaN	NaN		0.02872	4.2	4.2	4.2	34.577	1	1	1	000		
30	1.2975	0.978	1.0558		6.28E	11.6	11.6	11.6	73.243	6	6	6	000		
31	1.3502	1.0293	0.82036		3.03E	6.6	6.6	6.6	133.77	6	6	6	014		
32	NaN	NaN	NaN		0.0001	5.9	5.9	5.9	38.964	2	2	2	014		
552 iterre								_			_				
553 items															
															Version 1.5.1.6

Perseus projects are saved as sps-files

One now starts with the removal of usually irrelevant protein group identifications i.e. "Only identified by site", "Reverse" and "Potential contaminants" → Click Filter rows - Filter rows based on categorical columns

Removal of usually irrelevant protein group identifications

Perseus now created a **matrix2** (in a new tab), in which all entries marked with a + in the "Only identified by site"-category have been removed

	Session1 - Pe	erseus	-	-					-					-						
	Matrix																			
1 🧐	Basic 🔹	Filter	r rows •	Annot	Jumns •	Imputation •	Clust	ering •	🐸 P ₂	Visualizati	ion 🔹 📫	111111	Basic •							
E 🖸	Rearrange •	Filter	r columns 🔹	unnot. r	rows •	Modification	s • f(x) 📈	î 💶 Z 🦻	\bar{x}^{p_N}	Clustering	g/PCA 🔹 🕺	(🔨 🔐 🖸								
1 <u>1</u>	Normalizatio	on • Qual	lity •	Tests •		Proteomic ru	iler 🔹 📰 🕀	\simeq 1D 2	D P1 🔺	Misc. •		i 🖆 💟								
Load				F	Processing						Analysis		Mu	proc.	Export				_	
matrix1	matrix2	5															4 🕨 🗖	j 🔝 🖑 🗶 🖊 👚 🛅 📑	. 4	Creator Appette
Data																	4 ▶ 🖪			02/18/2015 18:02:58
	А	В	С	Only	Reverse	Potential	Q-value	Score	Intensity	Intensity	Intensity	Peptides	Peptides	Peptides	Razor	Razor +	Ra	Generic matrix u		Origin: D:\SILAC Workshop 2015\combined\txt\proteinGroups.txt
				by site		contant				L		<u>^</u>	D	Č	peptides	potides	pe			Quality: (small values are good.)
Туре	Expres	Expres	Expres	Catego	. Catego	. Catego	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Nu	matrix1		Rows (1607)
1	NaN	NaN	0.80343				0	4.0745	188920	9885200	9006800	0	0	3	0	0		Filter rows based		 Expression columns (3) Categorical columns (3)
2	NaN	NaN	0.64703				0.0034	1.4653	183450	124320	5912800	0	1	2	0	1	2			String columns (4)
3	NaN	0.50649	0.81553				0	6.6682	931260	667470	263780	. 1	5	3	1	5	3	matrix2		 Numerical columns (17) Multi-numerical columns (8)
4	NaN	NaN	1.1320				0.0014	14.438	968950	496020	472930	. 0	1	/	0	1	1	, , , , , , , , , , , , , , , , , , ,		Categorical rows (0)
0	NaN	NaN	NaN				0.0014	1.9054	960480	832250	128230	0	1	0	1	1	0			Numerical rows (0)
7	NoN	NaN	NoN				0.0078	5.6441	1161600	1124000	5226.9	0	0	2	0	0	2			
8	NaN	NaN	NaN				0.0095	0.00650	254400	254400	0	0	0	3	0	0	1			
9	NaN	NaN	NaN		-		0.0077	1 1381	128280	128280	0	0	0	2	0	0	1			
10	NaN	0.33634	0.5571				0	4.9443	374210	305720	6849100	0	2	2	0	2	2			
11	NaN	NaN	0.14989				0	26.421	296510	251130	4537400	0	2	4	0	0	2			
12	NaN	NaN	NaN				0	21.108	8887900	5066000	3821900	0	1	2	0	0	1			
13	NaN	NaN	0.75698				0	3.1953	135380	8140000	5397600	0	0	1	0	0	1			
14	0.60601	1.0407	0.7331				0	57.426	663490	420780	242710	. 7	4	10	7	4	10			
15	NaN	NaN	NaN				0	4.5381	3446500	1936500	1510000	0	0	1	0	0	1			
16	0.0810	3.3769	1.283				0	191.38	464670	254420	210260	20	25	18	20	25	18			
17	NaN	NaN	NaN				0.0094	0.94881	7212000	2895100	4316900	0	0	1	0	0	1			
18	NaN	NaN	0.59947				0	4.8189	124850	7841100	4643800	0	0	1	0	0	1			
19	NaN	NaN	NaN				0	3.4842	513390	425040	8834400	0	2	0	0	2	0			
20	1.0224	0.46729	0.67218				0	84.494	446610	320330	126280	3	6	10	3	6	10			
21	NaN	NaN	NaN				0.0014	1.7605	1550900	1295900	254970	0	1	0	0	1	0			
22	NaN	NaN	0.0379				0	54.024	5748300	5706900	41385	0	0	4	0	0	4			
23	NaN	NaN	0.88542				0	2.965	6351000	3160500	3190500	0	0	1	0	0	1			
24	NaN	NaN 2.0667	0.90245				0	5.0359	193560	134310	5924700	0	1	1	0	1	1			
20	NaN	2.0007	0.61940				0	4./8/	200040	6450000	4002400	0	0	2	0	2	1			
20	NoN	NaN	0.01849				0	2.2244	104520	4040000	4002100	0	0	2	0	0	2			
28	0.96770	0.39904	NaN				0	3.0785	100530	850920	154400	2	2	0	2	2	2			-
29	0.97586	0.90167	0.81699				0	202 54	213370	132590	807790	13	26	28	- 13	- 26	28			
30	NaN	NaN	NaN				0	2.6081	5259800	3040000	2219800	0	0	1	0	0	1			
31	0.84727	0.60973	0.36602				0	20.291	100360	713550	290030	4	4	3	4	4	3			
32	NaN	NaN	2.8061				0.0014	1.6726	117460	386590	787980	. 1	1	2	1	1	2			
1607 item	s																			
																				Version 1.5.1.6

Now repeat the **filtering** for the other two categories!

	essioni - Pe	erseus	-	-			-		-										
	Matrix											DDF	1. J.						
	Basic •	Filte	r rows *	Annot. o	columns •	Imputation	 Clust 	ering •	₩ P ₂	Visualizati	ion • 🕂	F iii: 🖄 🔐	Basic •						
三日日	Rearrange •	Filte	r columns •	Annot. r	rows •	Modification	ns 🔹 🔣 🖉			Clustering	/PCA • 🕵	× 🐿 😻 🔽	100,000						
15	Normalizatio	on • Qua	anty •	rests *		Proteomic r	uler • 🔛 🦄	r ∽ id z		WISC. *									
Load	and the second			ŀ	rocessing				1		Analysis		Mul	ti-proc.	Export				4 112
matrix1	naurixz																< ▶ □	: E 🖑 🛪 🕈 🖀 🔳 🕫	Creator: Annette
Data	_																< ▶ □		02/18/2015 18:02:58
	A	В	С	Only identifi	Reverse	 Potential contam 	Q-value	Score	Intensity	Intensity L	Intensity H	Peptides A	Peptides B	Peptides C	Razor + unique	Razor + unique	Ra	Generic matrix u	File: proteinGroups.txt
Tune	Everes	Everee	Everee	by site	Catago	Catago	Numerie	Numerie	Numerie	Numerie	Numerie	Numerie	Numorio	Numerie	peptides	peptides	pe	All matrix 1	Quality: (small values are good.)
туре	Expres	Expres	Expres	Catego	. Catego.	Catego	Numeric	Numeric 4.0745	100000	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric		indurix i	Rows (1607) Expression columns (3)
2	NaN	NaN	0.60343				0.0024	4.0745	100920	104000	5010000	0	1	3	0	1	2	Filter rows based	Categorical columns (3)
2	NaN	0.50640	0.04703				0.0034	1.4005	024260	667470	262790	1	5	2	1	5	2		String columns (4)
3	NaN	0.50049 NaN	1 1226				0	14 439	931200	496020	472020	. 1	1	7	0	1	7	matrix2	 Multi-numerical columns (17) Multi-numerical columns (8)
5	NaN	NaN	NaN				0.0014	1 9054	960490	832250	129230	0	1	0	0	1	0		Categorical rows (0)
6	NaN	NaN	NaN				0.0078	1.3034	1918800	1124800	793970	1	0	0	1	0	0		Numerical rows (0)
7	NaN	NaN	NaN				0	5 6441	1161600	1156300	5326.8	0	0	2	0	0	2		
8	NaN	NaN	NaN				0.0095	0.99659	254400	254400	0	0	0	3	0	0	1		
9	NaN	NaN	NaN				0.0077	1,1381	128280	128280	0	0	0	2	0	0	1		
10	NaN	0.33634	0.5571				0	4.9443	374210	305720	6849100	0	2	2	0	2	2		
11	NaN	NaN	0.14989				0	26.421	296510	251130	4537400	0	2	4	0	0	2		
12	NaN	NaN	NaN				0	21.108	8887900	5066000	3821900	0	1	2	0	0	1		
13	NaN	NaN	0.75698				0	3.1953	135380	8140000	5397600	0	0	1	0	0	1		
14	0.60601	1.0407	0.7331				0	57.426	663490	420780	242710	. 7	4	10	7	4	10		
15	NaN	NaN	NaN				0	4.5381	3446500	1936500	1510000	0	0	1	0	0	1		
16	0.0810	3.3769	1.283				0	191.38	464670	254420	210260	. 20	25	18	20	25	18		
17	NaN	NaN	NaN				0.0094	0.94881	7212000	2895100	4316900	0	0	1	0	0	1		
18	NaN	NaN	0.59947				0	4.8189	124850	7841100	4643800	0	0	1	0	0	1		
19	NaN	NaN	NaN				0	3.4842	513390	425040	8834400	0	2	0	0	2	0		
20	1.0224	0.46729	0.67218				0	84.494	446610	320330	126280	. 3	6	10	3	6	10		
21	NaN	NaN	NaN				0.0014	1.7605	1550900	1295900	254970	0	1	0	0	1	0		
22	NaN	NaN	0.0379				0	54.024	5748300	5706900	41385	0	0	4	0	0	4		
23	NaN	NaN	0.88542				0	2.965	6351000	3160500	3190500	0	0	1	0	0	1		
24	NaN	NaN	0.90245				0	5.0359	193560	134310	5924700	0	1	1	0	1	1		
25	NaN	2.0667	NaN				0	4.787	266540	102710	163830	. 1	3	2	0	2	1		
26	NaN	NaN	0.61849				0	5.9197	104520	6450000	4002100	0	0	1	0	0	1		
27	NaN	NaN	1.4144				0	3.3244	103470	4940000	5407100	0	0	2	0	0	2		
28	0.96779	0.39904	NaN				0	3.0785	100530	850920	154400	. 2	2	0	2	2	0		
29	0.97586	0.90167	0.81699				0	202.54	213370	132590	807790	. 13	26	28	13	26	28		
30	NaN	NaN	NaN				0	2.6081	5259800	3040000	2219800	0	0	1	0	0	1		
31	0.84727	0.60973	0.36602				0	20.291	100360	713550	290030	. 4	4	3	4	4	3		
32	NaN	NaN	2.8061				0.0014	1.6726	117460	386590	787980	. 1	1	2	1	1	2		
1607 item:	;							2											
																			Version 1.5.1.

First steps entries remain from initially 1628.

<mark>. </mark>	essioni - Pe	erseus	-	-					-					-					
	Matrix																		도 💭 🗢 🚇
1 🧐	Basic •	Filter	r rows •	Annot. c	olumns • I	Imputation •	Clust	ering •	3 P2	Visualizati	on • 📫	F 🎫 🗠 🚚	Basic •						
王曰	Rearrange •	Filter	r columns •	Annot. re	ows • I	Modification	s • 🛛 🕅 🗵	2 🖬 Z 🛐	$\overline{x} p_{N}$	Clustering	/PCA 🔹 🐝	x 💊 😃 🔽							
\$	Normalizatio	on • Qual	lity •	Tests •	l.	Proteomic ru	ler 🔹 🕎 ∛	🕴 🗠 1D 2	D 🖭 👗	Misc. •	<u>,</u>	l 🧲 💟							
Load				P	rocessing						Analysis		Mult	ti-proc.	Export				
matrix1	matrix2 ma	atrix3 matr	rix4														< > C	🗆 🕑 🗙 🐥 🎓 % 🖹 🖕	▲ matrix4
Data																	< > C		Creator: Annette 02/18/2015 18:02:58
	A	в	С	Only	Reverse	Potential	Q-value	Score	Intensity	Intensity	Intensity	Peptides	Peptides	Peptides	Razor +	Razor +	Ra	Generic matrix u	Origin: D:\SILAC Workshop 2015\combined\txt\proteinGroups.txt
				identifi by site		contam				L	н	A	В	C	unique peptides	unique peptides	pe		File: proteinGroups.txt
Туре	Expres	Expres	Expres	Catego	Catego	Catego	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numerio	NU	matrix1	Quality: (small values are good.) Rows (1507)
1	NaN	NaN	0.80343				0	4.0745	188920	9885200	9006800	0	0	3	0	0	3		Expression columns (3)
2	NaN	NaN	0.64703				0.0034	1.4653	183450	124320	5912800	0	1	2	0	1	2	Filter rows based	 Categorical columns (3) String columns (4)
3	NaN	0.50649	0.81553				0	6.6682	931260	667470	263780	. 1	5	3	1	5	3	matrix 2	 Numerical columns (17)
4	NaN	NaN	1.1326				0	14.438	968950	496020	472930	. 0	1	7	0	1	7	inauticz	Multi-numerical columns (8) Coloradia (20)
5	NaN	NaN	NaN				0.0014	1.9054	960480	832250	128230	0	1	0	0	1	0	Filter rows based	Numerical rows (0)
6	NaN	NaN	NaN				0.0078	1.1743	1918800	1124800	793970	1	0	0	1	0	0		
7	NaN	NaN	NaN				0	5.6441	1161600	1156300	5326.8	0	0	2	0	0	2	matrix3	
8	NaN	NaN	NaN				0.0095	0.99659	254400	254400	0	0	0	3	0	0	1		
9	NaN	NaN	NaN				0.0077	1.1381	128280	128280	0	0	0	2	0	0	1	Filter rows based	
10	NaN	0.33634	0.5571				0	4.9443	374210	305720	6849100	0	2	2	0	2	2	matrix4	
11	NaN	NaN	0.14989				0	26.421	296510	251130	4537400	0	2	4	0	0	2		
12	NaN	NaN	NaN				0	21.108	8887900	5066000	3821900	0	1	2	0	0	1		
13	NaN	NaN	0.75698				0	3.1953	135380	8140000	5397600	0	0	1	0	0	1		
14	0.60601	1.0407	0.7331				0	57.426	663490	420780	242710	. 7	4	10	7	4	10		
15	NaN	NaN	NaN				0	4.5381	3446500	1936500	1510000	0	0	1	0	0	1		
16	0.0810	3.3769	1.283				0	191.38	464670	254420	210260	. 20	25	18	20	25	18		
17	NaN	NaN	NaN				0.0094	0.94881	7212000	2895100	4316900	0	0	1	0	0	1		
18	NaN	NaN	0.59947				0	4.8189	124850	7841100	4643800	0	0	1	0	0	1		
19	NaN	NaN	NaN				0	3.4842	513390	425040	8834400	0	2	0	0	2	0		
20	1.0224	0.46729	0.67218				0	84.494	446610	320330	126280	. 3	6	10	3	6	10		
21	NaN	NaN	NaN				0.0014	1.7605	1550900	1295900	254970	0	1	0	0	1	0		
22	NaN	NaN	0.0379				0	54.024	5748300	5706900	41385	0	0	4	0	0	4		
23	NaN	NaN	0.88542				0	2.965	6351000	3160500	3190500	0	0	1	0	0	1		
24	NaN	NaN	0.90245				0	5.0359	193560	134310	5924700	0	1	1	0	1	1		
25	NaN	2.0667	NaN				0	4.787	266540	102710	163830	. 1	3	2	0	2	1		
26	NaN	NaN	0.61849				0	5.9197	104520	6450000	4002100	0	0	1	0	0	1		
27	NaN	NaN	1.4144				0	3.3244	103470	4940000	5407100	0	0	2	0	0	2		
28	0.96779	0.39904	NaN				0	3.0785	100530	850920	154400	. 2	2	0	2	2	0		
29	0.97586	0.90167	0.81699				0	202.54	213370	132590	807790	. 13	26	28	13	26	28		
30	NaN	NaN	NaN				0	2.6081	5259800	3040000	2219800	0	0	1	0	0	1		
31	0.84727	0.60973	0.36602				0	20.291	100360	713550	290030	. 4	4	3	4	4	3		
32	NaN	NaN	2.8061				0.0014	1.6726	117460	386590	787980	. 1	1	2	1	1	2		
1507 item:																			
																			Version 1.5.1.6

Since all three categorical columns are empty now, we can remove them to clean up the table.

First steps

After removal of empty columns, the data can be processed further...

2 I 🗋 I 🎽	ession1 - Pe	rseus		-			8		-												
-	Matrix																				Fu 🔷 🛱
1 1	Basic •	Filter	rows •	Annot. c	olumns •	Imputation •	Clust	ering •	🐸 P ₂	Visualizati	on• +	BBE 🖂 🚚	Basic •								
三日	Rearrange 🔹	Filter	columns •	Annot. re	ows 🔹	Modification	s • f(x) 🛛	🕯 🎫 Z 🔊	$\bar{x}^{p_{N}}$	Clustering	/PCA 🔹 🎎	: 🔊 😃 🔽									
\$	Normalizatio	n • Quali	ity •	Tests •		Proteomic ru	iler 🔹 🧱 🗄	🖓 🗠 1D 2	D 🖭 🛦 💧	Misc. •	_ _	de 🖉									
Load				Pi	rocessing						Analysis		Mult	ti-proc.	Export						
matrix1	matrix2 ma	trix3 mat	rix4 matrix	5 matrix6	5 matrix	7											4 🕨 🗖	🛛 🕑 🗶 🐥 🎓 🖫 🗈 🛓	⊿ ma	trix5	
Data																	4 🕨 🖸			02/18/2015 18:02:58	
	A	в	С	Q-value	Score	Intensity	Intensity	Intensity	Peptides	Peptides	Peptides	Razor +	Razor +	Razor +	Unique	Unique	Ur	Generic matrix u		Origin: D:\SILAC Workshop 2015\c	.ombined\txt\proteinGroups.txt
							L	н	A	в	C	peptides	peptides	peptides	A	B	C Pe			File: proteinGroups.txt Quality: (small values are good.)	
Туре	Expres	Expres	Expres	Numeric	Numeri	c Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Nu	matrix1		Rows (1507)	
1	NaN	NaN	0.80343	0	4.0745	188920	9885200	9006800	0	0	3	0	0	3	0	0	3	Cittan and based	Þ	Expression columns (3) Categorical columns (0)	
2	NaN	NaN	0.64703	0.0034	1.4653	183450	124320	5912800	0	1	2	0	1	2	0	1	2	Pliter rows based	Þ	String columns (4)	
3	NaN	0.50649	0.81553	0	6.6682	931260	667470	263780	1	5	3	1	5	3	1	5	3	matrix2	Þ	Numerical columns (17)	
4	NaN	NaN	1.1326	0	14.438	968950	496020	472930	0	1	7	0	1	7	0	1	7		V	Categorical rows (0)	
5	NaN	NaN	NaN	0.0014	1.9054	960480	832250	128230	0	1	0	0	1	0	0	1	0	Filter rows based		Numerical rows (0)	
6	NaN	NaN	NaN	0.0078	1.1743	1918800	1124800	793970	1	0	0	1	0	0	1	0	0				
7	NaN	NaN	NaN	0	5.6441	1161600	1156300	5326.8	0	0	2	0	0	2	0	0	2	matrix3			
8	NaN	NaN	NaN	0.0095	0.99659	254400	254400	0	0	0	3	0	0	1	0	0	1	Filter rows based			
9	NaN	NaN	NaN	0.0077	1.1381	128280	128280	0	0	0	2	0	0	1	0	0	1				
10	NaN	0.33634	0.5571	0	4.9443	374210	305720	6849100	0	2	2	0	2	2	0	2	2	matrix4			
11	NaN	NaN	0.14989	0	26.421	296510	251130	4537400	0	2	4	0	0	2	0	0	2				
12	NaN	NaN	NaN	0	21.108	8887900	5066000	3821900	0	1	2	0	0	1	0	0	1	Remove empty c			
13	NaN	NaN	0.75698	0	3.1953	135380	8140000	5397600	0	0	1	0	0	1	0	0	1	matrix5			
14	0.60601	1.0407	0.7331	0	57.426	663490	420780	242710	/	4	10	1	4	10	/	4	10				
15	NaN	NaN	NaN	0	4.5381	3446500	1936500	1510000	0	0	1	0	0	1	0	0	1	Transform			
10	0.0810	3.3709	1.283 NoN	0 0004	191.38	404070	204420	210200	20	25	18	20	25	18	20	25	18				
10	NoN	NaN	0.50047	0.0094	4.0400	104050	2095100	4510900	0	0	4	0	0	4	0	0	1	matrix6			
10	NaN	NaN	0.59947 NoN	0	4.0109	512200	125040	4043600	0	2	0	0	2	0	0	2	0	Rename columns			
20	1 0224	0.46720	0.67219	0	94 4042	446610	220220	126290	2	6	10	2	6	10	2	2	6				
20	NaN	NaN	NaN	0.0014	1 7605	1550900	1205000	254970	0	1	0	0	1	0	0	1	0	matrix7			
22	NaN	NaN	0.0379	0	54 024	5748300	5706900	41385	0	0	4	0	0	4	0	0	4				
23	NaN	NaN	0.88542	0	2.965	6351000	3160500	3190500	0	0	1	0	0	1	0	0	1				
24	NaN	NaN	0.90245	0	5.0359	193560	134310	5924700	0	1	1	0	1	1	0	1	1				
25	NaN	2.0667	NaN	0	4.787	266540	102710	163830	1	3	2	0	2	1	0	2	1				
26	NaN	NaN	0.61849	0	5.9197	104520	6450000	4002100	0	0	1	0	0	1	0	0	1				
27	NaN	NaN	1.4144	0	3.3244	103470	4940000	5407100	0	0	2	0	0	2	0	0	2				
28	0.96779	0.39904	NaN	0	3.0785	100530	850920	154400	2	2	0	2	2	0	2	2	0				
29	0.97586	0.90167	0.81699	0	202.54	213370	132590	807790	13	26	28	13	26	28	13	26	28				
30	NaN	NaN	NaN	0	2.6081	5259800	3040000	2219800	0	0	1	0	0	1	0	0	1				
31	0.84727	0.60973	0.36602	0	20.291	100360	713550	290030	4	4	3	4	4	3	4	4	3				
32	NaN	NaN	2.8061	0.0014	1.6726	117460	386590	787980	1	1	2	1	1	2	1	1	2				
1507																					
1507 items																					
																					Version 1.5.1.6

More...

- Additional Perseus tutorials at our webpage
 - Analysis of SILAC data
 - Analysis of label-free quantification data (under construction)
 - Analysis of large-scale phosphoproteomics data (under construction)
- Official Perseus documentation
 - <u>http://141.61.102.17/perseus_doku/</u>
- Video tutorials from MaxQuant Summer Schools
 - <u>http://www.youtube.com/channel/</u> <u>UCKYzYTm1cnmc0CFAMhxD08w</u>

• Example dataset from:

Research

© 2013 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org

SILAC-Based Proteomics of Human Primary Endothelial Cell Morphogenesis Unveils Tumor Angiogenic Markers*

Sara Zanivan§‡§§, Federica Maione¶∥, Marco Y. Hein‡, Juan Ramon Hernández-Fernaud§, Pawel Ostasiewicz‡**, Enrico Giraudo¶∥, and Matthias Mann‡‡‡§§

• Example dataset:

• First download the example data from the PRIDE data repository (<u>http://www.ebi.ac.uk/pride/archive/</u>)

EMBL-EBI 🍈		Services Research	Training About us	
PRIDE Archive	Examples: stress, human, blood, P	02768, MDPNTIIEALR*	Search	
Home Submit data Browse data Help Publications About PRIDE Archive		k Register 🎤 Lo	ogin 🔍 Feedback	
PRIDE > Archive > PXD000359				
Project PXD000359		wnload Project Files	← ι	ink to
Summary				
Title	Species	Tissue		
SILAC-based proteomics of human primary endothelial cell morphogenesis unveils tumor angiogenic markers	Homo sapiens	Not available		
Description	(Human)			
Abstract: Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the approached more	Instrument	Software		
still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no	LTQ Orbitrap	Not available		
in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic	Modification	Quantification		
Read more	iodoacetamide derivatized residue	Not available		
Sample Processing Protocol	acetylated residue			
See details in reference PMID : 23979707	residue			
Data Processing Protocol	Experiment Type			
See details in reference PMID : 23979707	Bottom-up proteomics			
Contact				
Sara Zanivan, Vascular Proteomics				

Just download the **txt.zip** file

EMBL-EBI					Services Research Trai	ining A
PRIDE PRIE	DE Archive			xamples: stress, human, blood	P02768, MDPNTIJEALR*	Search
Home Submit data Brows	e data Help Publications About PRIDE Archive				🦆 Register 🏼 🔎 Login	🗪 Fe
PRIDE > Archive > PXD000359	> Download files					
Project : PX	(D000359			.± FT	"P Download	
Submitted Files						
3 Search Files						
Name	Size	HTTP Download	Fast Download (Asp	era)		
txt.zip	3.584,125 MB	🗄 Download 📐	🗄 Download			
txtCLEC-IP.zip	155,275 MB	🖄 Download	🗄 Download			
txtECM.zip	196,464 MB	L Download	🗄 Download			
559 RAW Files						
Name			Size	HTTP Download	Fast Download (Aspera)	
20080621_Orbi3_SZ_Matrigel_	Exp2_24h_InGel_01.RAW		358,409 MB	🗄 Download	🗄 Download	
20080621_Orbi3_SZ_Matrigel_	Exp2_24h_InGel_02.RAW		368,439 MB	± Download	🗄 Download	
20080621 Orbi3 SZ Matricel	Exp2 24h InGel 03.RAW		341,823 MB		🗄 Download	

After extracting the zip-file we need the **proteinGroups.txt**, which we import into Perseus

Processing	Analysis		Multi-proc. Export			_	
🔁 Generic matrix upload							
File					Select	-	
			Expression				
			>	/	t		
	Dpen 📴 Open						
	Computer 🕨 Data Robert (D	D:) 🕨	SILAC Workshop 2015	(Mann paper) 🕨 combi	ned ▶ txt		
	Organize 👻 New folder						
	★ Favorites	-	Name	Date modified	Туре	Size	
	📃 Desktop		📋 aifMsms.txt	02.03.15 11:23	Text Document	0 KB	
	🐌 Downloads		allPeptides.txt	07.03.15 11:24	Text Document	3,705 KB	
	Recent Places		evidence.txt	02.03.15 11:23	Text Document	1,704 KB	
	😌 Dropbox		📋 libraryMatch.txt	02.03.15 11:23	Text Document	0 KB	
	🖵 ms (Ms-nas-laufwerk) (W)		matchedFeatures.txt	02.03.15 11:24	Text Document	0 KB	
	MS-Ergebnisse (MS-NAS-LAUFWERK)		modificationSpecificPeptides.txt	02.03.15 11:23	Text Document	913 KB	
	Protokolle (MS-NAS-LAUFWERK)		ms3Scans.txt	02.03.15 11:23	Text Document	0 KB	
	iCloud Drive		msms.txt	02.03.15 11:23	Text Document	10,642 KB	
	🛞 iCloud Photos		msmsScans.txt	02.03.15 11:23	Text Document	3,712 KB	
		Ξ	msScans.txt	02.03.15 11:23	Text Document	950 KB	
	🥽 Libraries		mzRange.txt	02.03.15 11:23	Text Document	195 KB	
	Documents		Oxidation (M)Sites.txt	02.03.15 11:23	Text Document	262 KB	
	J Music		parameters.txt	02.03.15 11:23	Text Document	2 KB	
	E Pictures		📋 peptides.txt	02.03.15 11:23	Text Document	820 KB	
	Videos		proteinGroups.txt	02.03.15 11:24	Text Document	445 KB	N
			📄 summary.txt	02.03.15 11:23	Text Document	2 KB	5
	Computer						

After extracting the zip-file we need the **proteinGroups.txt**, which we import into Perseus

Generic matrix upload			
ile	D:\SILAC Workshop 2015\Zanivan et al 2013 (Mar	nn paper)\Original results Mann\proteinGroups.txt	Select
	Razor + unique peptides Matr 30h_1 Razor + unique peptides Matr 30h_2 Razor + unique peptides Matr 30h_3 Razor + unique peptides Matr dil_1 Razor + unique peptides Matr dil_2 Razor + unique peptides Matr dil_3 Unique peptides BSA_1 Unique peptides BSA_2 Unique peptides BSA_3	 Expression Ratio H/L normalized 0h_1 Ratio H/L normalized 0h_2 Ratio H/L normalized 0h_3 Ratio H/L normalized Matr 30h_11 Ratio H/L normalized Matr 30h_2 Ratio H/L normalized Matr 30h_3 	t u d b
	Unique peptides FN_1 Unique peptides FN_2 Unique peptides FN_3 Unique peptides GFR_1 Unique peptides GFR_2 Unique peptides GFR_3 Unique peptides LAM_1 Unique peptides LAM_2 Unique peptides LAM_2	Numerical PEP Intensity L Intensity H	t u d b
	Unique peptides LAM_3 Unique peptides Matr 12h_1 Unique peptides Matr 12h_2 Unique peptides Matr 12h_3 Unique peptides Matr 24h_1 Unique peptides Matr 24h_3 Unique peptides Matr 24h_3 Unique peptides Matr dil_1 Unique peptides Matr dil_2 Unique peptides Matr dil_3	Categorical > Only identified by site <	t u d b
	Sequence coverage [%] Unique + razor sequence coverage [%] Unique sequence coverage [%] Mol. weight [kDa] Sequence length Sequence lengths Slice average Slice 1 Slice 2 Slice 3	Text > Protein IDs Protein names Gene names Gene names Proteins Proteins	t u d b
	Slice 4 Slice 5 Slice 6 Slice 7 Slice 8 Slice 9 Slice 10 Slice 11 Slice 12	Multi-numerical	t u d b
	Shorten expression column names		
ncel	Desc	ription	С

There is a lot of different samples in the dataset. We only select the 0h (control) and the Matr30h (growth on Matrigel for 30h) samples.

Now we make classical SILAC ratios out of the Spike-in SILAC ratios

ratio 0h=heavy (Standard)/light (0h)

&

ratio Matr30h=heavy(Standard)/light(Matr30h)

ratioMatr30h/0h=heavy(standard)/light(0h) /heavy
(standard)/light(Matr30h) = light(Matr30h)/light
(0h)

Now we make classical SILAC ratios out of the Spike-in SILAC ratios

Data												< > C
	Matr 30h_1_x/y_0	Ma 30H ^o 2_x/y_0	Matr 30h_3_x/y_0h_3	Only identifi by site	Reverse	Contam	PEP	Intensity	Intensity L	Intensity H	Protein IDs	Majorit protein IDs
Туре	Expression	Expression	Expression	Catego	Catego	Catego	Numeric	Numeric	Numeric	Numeric	Text	Text
1	1.50935	1.16412	1.39022				0	953960	699960	254000	A0AVT	A0AVT
2	0.702995	0.42739	0.700261				0	257690	177260	804350	A0FGR	A0FGF
3	NaN	NaN	NaN				3.4808	670070	596980	7308500	A0JLT	A0JLT.
4	1.76249	NaN	NaN				8.1766	119360	977740	215880	A0JNW5	A0JNV
5	NaN	NaN	NaN	+			1.7907	270370	215370	550060	E9PHQ	E9PHC
6	NaN	NaN	NaN				9.5202	514250	435080	791680	A0MZ6	A0MZ6
7	NaN	NaN	0.730709				4.8278	492420	386300	106120	A0PJW	A0PJW
8	NaN	NaN	NaN				1.8473	583650	380530	203110	Q1565	Q1565
9	NaN	NaN	NaN				4.2013	8772200	8038000	734270	A0T4C	A0T4C
10	NaN	NaN	1.36252				3.3301	403140	285770	117380	A1A4S	A1A4S
11	NaN	NaN	NaN	+			0.0001	124580	999490	246320	A1KZ9	A1KZ9
12	NaN	NaN	NaN				2.5025	330490	296430	3406000	A1L020	A1L02
13	0.659292	0.803885	0.848393				0	327420	267380	600400	A1L0T	A1L0T
14	NaN	NaN	NaN				2.4735	975370	751600	223770	A1L188	A1L18
15	1.82832	1.58992	1.63713				0	179760	153430	263300	A1X28	A1X28
16	0.532811	NaN	0.792298				1.8734	241310	204190	371160	Q86X1	Q86X1
17	NaN	NaN	0.559604				2.1456	772010	592580	179420	A2A2G	A2A2G
18	1.20431	NaN	1.3273				0	261260	224830	364340	A2A2Q	A2A2C
19	NaN	NaN	NaN				3.9044	309930	244260	656670	P4269	P4269
20	NaN	NaN	NaN				1.6859	294430	201560	928690	Q1467	Q1467
21	NaN	NaN	NaN				1.5469	0	0	0	A2A3N	A2A3N
22	1.08225	0.893445	0.759342				0	132740	110890	218430	P3561	P3561
23	NaN	NaN	0.65183				4.4591	870720	690160	180560	P2806	P2806
24	NaN	NaN	NaN				3.976E	123110	7939000	4372300	O0032	O0032
25	NaN	NaN	NaN	+			1.6228	0	0	0	A2NHM	A2NHM
26	0.684863	0.978735	0.921552				0	108150	807580	273950	Q9UBC	Q9UB(
27	NaN	NaN	NaN	+			0.0001	161420	874090	740140	Q9GZY	Q9GZY
28	0.573	0.80311	0.547657				0	126030	967480	292790	A2RRP	A2RRF
29	NaN	1.44914	NaN				1.271E	709720	553200	156520	A2RUC	A2RUC
30	NaN	NaN	NaN				9.8889	781840	667720	114120	A2VDF	A2VDF
31	NaN	NaN	NaN	+			0.0050	0	0	0	A3KFI1	A3KFI1
32	NaN	NaN	NaN				6.8177	893840	669650	224180	A3KMH	АЗКМН
081 Item	5											

Now we again filter out the reverse , potential contaminants & identified by site hits.

7681 protein groups

Next we linearize the SILAC ratios by transforming them to their log2-values. This way protein up and downregulations of the same magnitude have equal distances in visual

representations.

The expression ratios are now log2-transformed.

	Matr 30h_1_x/y_0	Ma 30M_2_x/y_0	Matr 30h_3_x/y_0h_3	i
Туре	Expression	Expression	Expression	C
1	1.50935	1.16412	1.39022	Т
2	0.702995	0.42739	0.700261	
3	NaN	NaN	NaN	Т
4	1.76249	NaN	NaN	
5	NaN	NaN	NaN	F
6	NaN	NaN	NaN	
7	NaN	NaN	0.730709	Т
8	NaN	NaN	NaN	
9	NaN	NaN	NaN	Т
10	NaN	NaN	1.36252	
11	NaN	NaN	NaN	F
12	NaN	NaN	NaN	
13	0.659292	0.803885	0.848393	Т
14	NaN	NaN	NaN	
15	1.82832	1.58992	1.63713	Т
16	0.532811	NaN	0.792298	
17	NaN	NaN	0.559604	Τ
18	1.20431	NaN	1.3273	
19	NaN	NaN	NaN	Γ
20	NaN	NaN	NaN	Τ
21	NaN	NaN	NaN	Γ
22	1.08225	0.893445	0.759342	
23	NaN	NaN	0.65183	Γ
24	NaN	NaN	NaN	Γ
25	NaN	NaN	NaN	4
26	0.684863	0.978735	0.921552	Γ
27	NaN	NaN	NaN	4
28	0.573	0.80311	0.547657	
29	NaN	1.44914	NaN	[
30	NaN	NaN	NaN	
31	NaN	NaN	NaN	-
32	NaN	NaN	NaN	

	Matr 30h_1	Matr 30h_2	Matr 30h_3
Туре	Expres	Expres	Expres
1	0.5939	0.2192	0.47531
2	-0.508	-1.22637	-0.514
3	NaN	NaN	NaN
4	0.8176	NaN	NaN
5	NaN	NaN	NaN
6	NaN	NaN	-0.452
7	NaN	NaN	NaN
8	NaN	NaN	NaN
9	NaN	NaN	0.44628
10	NaN	NaN	NaN
11	-0.601	-0.314	-0.237
12	NaN	NaN	NaN
13	0.87052	0.6689	0.7111
14	-0.908	NaN	-0.335
15	NaN	NaN	-0.837
16	0.2682	NaN	0.4084
17	NaN	NaN	NaN
18	NaN	NaN	NaN
19	NaN	NaN	NaN
20	0.1140	-0.16255	-0.397
21	NaN	NaN	-0.617
22	NaN	NaN	NaN
23	-0.546	-0.031	-0.117
24	-0.803	-0.316	-0.868
25	NaN	0.5352	NaN
26	NaN	NaN	NaN
27	NaN	NaN	NaN
28	NaN	NaN	NaN
29	-0.457	NaN	-0.433
30	0.3684	0.2924	-0.356
31	NaN	NaN	NaN
32	NaN	NaN	NaN

To assess the reproducibility of the samples we perform a multi scatter plot. In this the expression values of each sample are compared to all others'.

Multi scatter plot	a Lotar, MF reach parts parts	a Mappin Protect Series, Protects	
Rows	Matr 30h_1_x/y_0h_1 Matr 30h_2_x/y_0h_2 Matr 30h_3_x/y_0h_3 PEP Intensity Intensity L Intensity H	Matr 30h_1_x/y_0h_1	t u d b
Columns	Matr 30h_1_x/y_0h_1 Matr 30h_2_x/y_0h_2 Matr 30h_3_x/y_0h_3 PEP Intensity Intensity L Intensity H	Matr 30h_1_x/y_0h_1 Matr 30h_2_x/y_0h_2 Matr 30h_3_x/y_0h_3	t u d b
Caraal	D		
Cancer	Desc	npuon	W OK

To assess the reproducibility of the samples we perform a multi scatter plot. In this the expression values of each sample are compared to all others'.

matrix1 matrix2 matrix4 matrix5 matrix6 matrix7 matrix8 matrix9 matrix10 matrix11							4	
	Points		Dista 12				4	
		Categories	Plots Lir	nes			4	
10 million and	_	Symbol	Symbol	Protein IDs	Majority protein	Protein names	Gene names	
	1		2	A0AVT1	A0AVT1	Ubiquitin	UBA6	6
	2		2	A0FGR8	A0FGR8	Extende	ESYT2	5
	3		2	A0JLT2;	A0JLT2;	Mediator	MED19	2
	4		2	A0JNW5	A0JNW5	UHRF1	UHRF1B	1
	5		2	A0MZ66	A0MZ66	Shootin-1	KIAA1598	8
	6		2	A0PJW6	A0PJW6	Transme	TMEM223	3
	7		2	Q15652;	Q15652;	Probable	JMJD1C	3
	8		2	A0T4C8	A0T4C8	Sphingo	SPHK2	6
	9		2	A1A4S6	A1A4S6	Rho GTP	ARHGAP	3
	10		2	A1L020	A1L020	RNA-bin	MEX3A	1
	11		2	A1L0T0;	A1L0T0	Acetolac	ILVBL	5
	12		2	A1L188	A1L188	Unchara	C17orf89	1
	13		2	A1X283;	A1X283	SH3 and	SH3PXD	S
	14		2	Q86X10	Q86X10	Ral GTP	RALGAP	7
	15		2	A2A2G4	A2A2G4	Dolichyl p	ALG6	2
	16		2	A2A2Q9	A2A2Q9	Unchara	C20orf4	2
	47	-	-	D40000	Diacoc.	DALA SI-	DD1/24	
	6767 iter	ns						
Mutt 300.1 Juy	No	labels ▼ 8 🕵 🔍 ↔ ‡	Protein	IDs ▼U	oto Y 🔹			
Matt 301, 2, 24, 201, 2	6-							
	0							
Matr 30h_1_x/y_0h_1 Matr 30h_2_x/y_0h_2 Matr 30h_3_x/y_0h_3	-3	-2	1 -1	0	1	2	3	

To see how well the three samples correlate we let Perseus do a Pearson correlation. Notice that **other common correlations** can also be calculated.

matrix1 matrix2 matrix4 matrix5 matrix6 matrix7 matrix8 matrix9 matrix10 matrix1								• • •
Data Multi scatter plot							4) Þ 🖸
· · · · · · · · · · · · · · · · · · ·	Points	Categories	Plots Li	nes			4	▶ □
<none></none>								
Log2(Absence-presence enrichment factor) Absence-presence -Log10(p-value)		Symbol	Symbol	Protein	Majority	Protein	Gene	F
Number of valid pairs	1	cólor	size 2	IDs A0AVT1	nrotein A0AVT1	names Ubiquitin	names UBA6	6
Valid pairs percentage	2		2	A0FGR8	A0FGR8	Extende	ESYT2	5
-Log10(Pearson p-value)	3		2	A0JLT2:	A0JLT2:	Mediator	MED19	2
-Log10(Pearson p-value) [correlation]	4		2	A0JNW5	A0JNW5	UHRF1	UHRF1B	1
-Logitu(Pearson p-value) [anti-correlation] R squared	5		2	A0MZ66	A0MZ66	Shootin-1	KIAA1598	8
Spearman rank correlation	6		2	A0PJW6	A0PJW6	Transme	TMEM223	3
-Log10(Spearman p-value) -Log10(Spearman p-value) [correlation]	7		2	Q15652;	Q15652;	Probable	JMJD1C	3
-Log10(Spearman p-value) [anti-correlation]	8		2	A0T4C8	A0T4C8	Sphingo	SPHK2	6
Kendall rank correlation	9		2	A1A4S6	A1A4S6	Rho GTP	ARHGAP	3
Mutual information	10		2	A1L020	A1L020	RNA-bin	MEX3A	1
Euclidean distance	11		2	A1L0T0;	A1L0T0	Acetolac	ILVBL	5
Manhattan distance Maximum distance	12		2	A1L188	A1L188	Unchara	C17orf89	1
	13		2	A1X283;	A1X283	SH3 and	SH3PXD	S
	14		2	Q86X10	Q86X10	Ral GTP	RALGAP	7
	15		2	A2A2G4	A2A2G4	Dolichyl p	ALG6	2
	16		2	A2A2Q9	A2A2Q9	Unchara	C20orf4	2
· · · · · · · · · · · · · · · · · · ·	47	-	-	D40000	D 40000	DATA NO.	DD1124	1
	6767 iter	ns						
	No	labels 🔻 8	Protein	IDs ▼ U	oto 🖞 🔹			
	1 22	0.0*	D 1 *	< → ¹ 2		2		
Wate			- Leo -	1 1 1 1 1 1	2			
								
- · · · · · · · · · · · · · · · · · · ·								
	0 -							
	~							
0 0 Matr 30h_1_x/y_0h_1 Matr 30h_2_x/y_0h_2 Matr 30h_3_x/y_0h_3	Ļ	2		Ļ				
	-3	-2	-1	0		2		

The results of the Pearson correlation analysis show a medium degree of correlation between the three samples.

At the next step we rename the columns to Matr 30h/0h_....

Rename columns	
Matr 30h_1_x/y_0h_1	Matr 30h/0h_1
Matr 30h_2_x/y_0h_2	Matr 30h/0h_2
Matr 30h_3_x/y_0h_3	Matr 30h/0h_3
PEP	PEP
Intensity	Intensity
Intensity L	Intensity L
Intensity H	Intensity H
Protein IDs	Protein IDs
Majority protein IDs	Majority protein IDs
Protein names	Protein names
Gene names	Gene names
Proteins	Proteins
Cancel	Description - Output

	Matr 30h/0h_1	Matr 30h/0h_2	Matr 30h/0h_3	PEP	Intensity	Intensity L	Intensity H	Protein IDs	Majority protein IDs	Protein names	Gene names	Proteins
Туре	Expression	Expression	Expression	Numeric	Numeric	Numeric	Numeric	Text	Text	Text	Text	Text
1	0.593931	0.219235	0.47531	0	953960	699960	254000	A0AVT	A0AVT	Ubiqui	UBA6	6
2	-0.508414	-1.22637	-0.514036	0	257690	177260	804350	A0FGR	A0FGR	Extend	ESYT2	5
3	NaN	NaN	NaN	3.4808	670070	596980	7308500	A0JLT	A0JLT	Mediat	MED19	2
4	0.817615	NaN	NaN	8.1766	119360	977740	215880	A0JNW5	A0JNW5	UHRF1	UHRF1	1
5	NaN	NaN	NaN	9.5202	514250	435080	791680	A0MZ6	A0MZ6	Shooti	KIAA1	8
6	NaN	NaN	-0.452631	4.8278	492420	386300	106120	A0PJW	A0PJW6	Transm	TMEM	3
7	NaN	NaN	NaN	1.8473	583650	380530	203110	Q1565	Q1565	Probab	JMJD1C	3
8	NaN	NaN	NaN	4.2013	8772200	8038000	734270	A0T4C	A0T4C	Sphing	SPHK2	6
9	NaN	NaN	0.44628	3.3301	403140	285770	117380	A1A4S	A1A4S	Rho G	ARHG	3
10	NaN	NaN	NaN	2.5025	330490	296430	3406000	A1L020	A1L020	RNA-b	MEX3A	1
11	-0.601011	-0.314939	-0.237196	0	327420	267380	600400	A1L0T	A1L0T0	Acetola	ILVBL	5
12	NaN	NaN	NaN	2.4735	975370	751600	223770	A1L188	A1L188	Uncha	C17orf	1
13	0.87052	0.668951	0.711168	0	179760	153430	263300	A1X28	A1X283	SH3 an	SH3PX	9
14	-0.908305	NaN	-0.335885	1.8734	241310	204190	371160	Q86X1	Q86X1	Ral GT	RALGA	7
15	NaN	NaN	-0.837522	2.1456	772010	592580	179420	A2A2G	A2A2G	Dolichy	ALG6	2
16	0.268208	NaN	0.408491	0	261260	224830	364340	A2A2Q	A2A2Q	Uncha	C20orf4	2
17	NaN	NaN	NaN	3.9044	309930	244260	656670	P4269	P4269	RNA-b	RBM34	5
18	NaN	NaN	NaN	1.6859	294430	201560	928690	Q1467	Q1467	KN mo	KANK1	6
19	NaN	NaN	NaN	1.5469	0	0	0	A2A3N	A2A3N6	Putativ	PIPSL	2
20	0.114033	-0.16255	-0.397179	0	132740	110890	218430	P3561	P3561	Alpha	ADD1	14
21	NaN	NaN	-0.617433	4.4591	870720	690160	180560	P2806	P2806	Protea	PSMB9	6
22	NaN	NaN	NaN	3.976E	123110	7939000	4372300	O0032	O0032	Aryl hy	ARNTL	11
23	-0.546112	-0.0310099	-0.117863	0	108150	807580	273950	Q9UBC	Q9UBC	Epider	EPS15	3
24	-0.803394	-0.316331	-0.868654	0	126030	967480	292790	A2RRP	A2RRP	Neurob	NBAS	4
25	NaN	0.5352	NaN	1.271E	709720	553200	156520	A2RUC	A2RUC4	tRNA w	TYW5	2
26	NaN	NaN	NaN	9.8889	781840	667720	114120	A2VDF	A2VDF	Fucose	C10orf	2
27	NaN	NaN	NaN	6.8177	893840	669650	224180	A3KMH	A3KMH	Uncha	KIAA0	6
28	NaN	NaN	NaN	2.0788	262730	166530	962020	E9PCH	E9PCH	Rap gu	FNIP1	9

To easily get an idea of the SILAC ratio distributions and see if they are normally distributed, we create a histogram.

Visualizations are always created within the selected matrix. There they can be found in a separate tab.

	Session3_only 0 vs	30h_2 - Perse	us	_								
-	Matrix											
🕇 🧐	Basic 🔻	Filter rows •	Annot. colu	mns • Imp	utation •	Clusteri	ng 🕶 🕴	😃 🍳 🔋 🗸	isualization	· 井 昭	E 🖂 🛺	Basic 🔹
亘 🛃	Rearrange •	Filter column	s • Annot. row	s∙ Moo	difications •	f(x) 🗹 !	💶 Z 🍸 :	\overline{x} P _N c	lustering/P	са 📲 🎊 🙎	0 😺 🔽	E E
\$	Normalization •	Quality 🔹	Tests 🔹	Prot	teomic ruler	• 📑 🖓 (\simeq 1D 2D	P1 🛕 🛛 N	Aisc. 🔹	- 🛃 G		
Load			Proc	essing						Analysis		Multi-pro
matrix1	matrix2 matrix4	4 matrix5 m	atrix6 matrix7	matrix8 n	natrix9							
Data H	listogram											
	Matr 30h/0h_1	Matr 30h/0h_2	Matr 30h/0h_3	PEP	Intensity	Intensity L	Intensity H	Protein IDs	Majority protein IDs	Protein names	Gene names	Proteins
Туре	Expression	Expression	Expression	Numeric	Numeric	Numeric	Numeric	Text	Text	Text	Text	Text
1	0.593931	0.219235	0.47531	0	953960	699960	254000	A0AVT	A0AVT	Ubiqui	UBA6	6
2	-0.508414	-1.22637	-0.514036	0	257690	177260	804350	A0FGR	A0FGR	Extend	ESYT2	5
3	NaN	NaN	NaN	3.4808	670070	596980	7308500	A0JLT	A0JLT	Mediat	MED19	2
4	0.817615	NaN	NaN	8.1766	119360	977740	215880	A0JNW5	A0JNW5	UHRF1	UHRF1	1
5	NaN	NaN	NaN	9.5202	514250	435080	791680	A0MZ6	A0MZ6	Shooti	KIAA1	8
6	NaN	NaN	-0.452631	4.8278	492420	386300	106120	A0PJW	A0PJW6	Transm	TMEM	3
7	NaN	NaN	NaN	1.8473	583650	380530	203110	Q1565	Q1565	Probab	JMJD1C	3
8	NaN	NaN	NaN	4.2013	8772200	8038000	734270	A0T4C	A0T4C	Sphing	SPHK2	6
9	NaN	NaN	0.44628	3.3301	403140	285770	117380	A1A4S	A1A4S	Rho G	ARHG	3
10	NaN	NaN	NaN	2.5025	330490	296430	3406000	A1L020	A1L020	RNA-b	MEX3A	1
11	-0.601011	-0.314939	-0.237196	0	327420	267380	600400	A1L0T	A1L0T0	Acetola	ILVBL	5
12	NaN	NaN	NaN	2.4735	975370	751600	223770	A1L188	A1L188	Uncha	C17orf	1
13	0.87052	0.668951	0.711168	0	179760	153430	263300	A1X28	A1X283	SH3 an	SH3PX	9
14	-0.908305	NaN	-0.335885	1.8734	241310	204190	371160	Q86X1	Q86X1	Ral GT	RALGA	7
15	NaN	NaN	-0.837522	2.1456	772010	592580	179420	A2A2G	A2A2G	Dolichy	ALG6	2
16	0.268208	NaN	0.408491	0	261260	224830	364340	A2A2Q	A2A2Q	Uncha	C20orf4	2
17	NaN	NaN	NaN	3.9044	309930	244260	656670	P4269	P4269	RNA-b	RBM34	5
18	NaN	NaN	NaN	1.6859	294430	201560	928690	Q1467	Q1467	KN mo	KANK1	6
19	NaN	NaN	NaN	1.5469	0	0	0	A2A3N	A2A3N6	Putativ	PIPSL	2

We can observe that the ratios are nicely distributed around 0.

<mark>8</mark> I 🗆 I	Session3_only 0 vs 30h_2 - Perse	us									-		
-	Matrix												
1 🦦	Basic • Filter rows •	Annot. columns • Imputation	 Clust 	tering •	🐸 P ₂	Visualization •	-井 闘:	🔄 🚚 🛛 Basi	c•				
EN	Rearrange • Filter columns	s • Annot. rows • Modificatio	ns 🔹 🕅	🛯 🖬 Z 🏹	\bar{x} PN	Clustering/PC/	A = 🎊 💁 🕯	0	8				
廢	Normalization • Quality •	Tests • Proteomic r	uler 🔹 🧱 将	🖗 🗠 1D 2D	P1 🛕	Misc. •	- 📕 🤮 🕻						
Load		Processing				Ar	nalysis	N	/ulti-proc.	Export			
matrix1	matrix2 matrix4 matrix5 ma	atrix6 matrix7 matrix8 matrix9											
Data	Histogram												
: 33 fr	rale 🖂 🗈 🖼 🕾		Points	Categories									
: ~ cn				Calaati		the s							
<i>"</i>				Selecti	on from ta	able 🔹 📑		D					
nut				Fill color	Border	Protein IDs	notein	Protein names	Gene	Proteins	Matr 30h/0h 1	Matr 30h/0h_2	Matr 30h/0h_3
ŏ			1			A0AVT1	A0AVT1	Ubiquitin	UBA6	6	0.593930	0.219234	0.475309
			2			A0FGR8	A0FGR8	Extende	ESYT2	5	-0.50841	-1.22637	-0.51403
	-5 0 5	-	3			A0JLT2;	A0JLT2;	Mediator	MED19	2	NaN	NaN	NaN
	Matr 30h/0h_1	2	4			A0JNW5	A0JNW5	UHRF1	UHRF1B	1	0.817614	NaN	NaN
			5			A0MZ66	A0MZ66	Shootin-1	KIAA1598	8	NaN	NaN	NaN
nts			6			A0PJW6	A0PJW6	Transme	TMEM223	3	NaN	NaN	-0.45263
Cou			7			Q15652;	Q15652;	Probable	JMJD1C	3	NaN	NaN	NaN
			8			A0T4C8	A0T4C8	Sphingo	SPHK2	6	NaN	NaN	NaN
	- <u></u>	-	9			A1A4S6	A1A4S6	Rho GTP	ARHGAP	3	NaN	NaN	0.446280
	-5 0 5 Matr 30h/0h_2		10			A1L020	A1L020	RNA-bin	MEX3A	1	NaN	NaN	NaN
			11			A1L0T0;	A1L0T0	Acetolac	ILVBL	5	-0.60101	-0.31493	-0.23719
s			12			A1L188	A1L188	Unchara	C17orf89	1	NaN	NaN	NaN
Ino			13			A1X283;	A1X283	SH3 and	SH3PXD	9	0.870519	0.668951	0.711167
0			14			Q86X10	Q86X10	Ral GTP	RALGAP	7	-0.90830	NaN	-0.33588
L		_	15			A2A2G4	A2A2G4	Dolichyl p	ALG6	2	NaN	NaN	-0.83752
	-5 0 5 Matr 30b/0b 3		16			A2A2Q9	A2A2Q9	Unchara	C20orf4	2	0.268208	NaN	0.408490
	wat son/on_s		17			P42696;	P42696;	RNA-bin	RBM34	5	NaN	NaN	NaN
			18			014678	014678	KN motif	KANK1	6	NaN	NaN	NaN

P		Session3_only U vs .	30h_2 - Perseus	<u> </u>	-			-				_		-		
	•	Matrix														
1	۰	Basic 🔹	Filter rows *	Annot. colu	Imns • Imputation	• Clust	ering •	🐸 P ₂	Visualization	• <mark>+</mark> ‡ ==	🗄 🛄 🛛 Basi	ic •				
1		Rearrange •	Filter columns 🔹	Annot. row	s • Modification	ns 🔹 🕅 🔀	🖞 🎫 Z 🏹	\bar{x}^{p_N}	Clustering/PC	A + 🖄 🧐 I	20 🖪	-R				
1		Normalization •	Quality 🕶	Tests 🔹	Proteomic r	uler 🔹 🧱 🕅	a 🗠 1D 2D	P ₁	Misc. •	- 1 C .	*					
L	bad			Proc	essing				Д	nalysis	1	Multi-proc.	Export			
m	atrix1	matrix2 matrix4	matrix5 matrix	6 matrix7	matrix8 matrix9											
D	ata H	listogram														
	r ln	cols 🖂 💷 🛃 🛣	_			Points	Categories									
ſ	Proper	ties			Duranting				x							
12	Toper				Properties					Majority	Protein	Gene	Proteins	Matr	Matr	Matr
100										A0AVT1	names Ubiquitin	Dames UBA6	6	30h/0h 1 0 593930	30h/0h 2 0 219234	30h/0h_3 0.475309
Ŭ					Histogram wid	th 200			÷	A0FGR8	Extende	ESYT2	5	-0.50841	-1 22637	-0.51403
		<u> </u>	<u> </u>		I Barran Kata	-ht land			_	A0JLT2:	Mediator	MED19	2	NaN	NaN	NaN
		-5 0 Matr 30h/0	5)h_1		Histogram neig	gnt 100				A0JNW5	UHRF1	UHRF1B	1	0.817614	NaN	NaN
					Min. value	-6.668	884132862	091		A0MZ66	Shootin-1	KIAA1598	8	NaN	NaN	NaN
uts		h			Manager	7.050	00000001/	110		A0PJW6				r	NaN	-0.45263
Cou					Max. value	17.602	363803810	012		Q15652;	Cha	nge n	umbe	r of	NaN	NaN
					Number of bins	s 41			ㅋ 🖊	A0T4C8.	hinc	Eoro	vamn	lo to	NaN	NaN
			<u> </u>			,				A1A4S6.	DI115.	1016	латтр		NaN	0.446280
		-5 0 Matr 30h/0	b_2							A1L020		10	0.		NaN	NaN
					Cancel			OK		A1L0T0	1		•••		0.31493	-0.23719
lts						1	-			A1L188	Unchara	C17orf89	1	NaN	NaN	NaN
100				6						A1X283	SH3 and	SH3PXD	9	0.870519	0.668951	0.711167
Ĩ						14			Q86X10	Q86X10	Ral GTP	RALGAP	7	-0.90830	NaN	-0.33588
			• <u>_</u>			15			A2A2G4	A2A2G4	Dolichyl p	ALG6	2	NaN	NaN	-0.83752
		-5 0 Matr 30h/0	b h_3			16			A2A2Q9	A2A2Q9	Unchara	C20orf4	2	0.268208	NaN	0.408490
						17			P42696;	P42696;	RNA-bin	RBM34	5	NaN	NaN	NaN

<mark>2</mark> [_) Sessions_only U	/s 30n_2 - Perseus		-							_		-		
-	Matrix														
1	Basic •	Filter rows •	Annot. co	olumns • Imputation	 Cluster 	ing •	🐸 P ₂	Visualization •	- 井 嘂 :	😳 🚚 📔 Basi	c •				
E	Rearrange •	Filter columns 🔹	Annot. ro	ws • Modificatio	ns 🔹 🕅 🗹	🖬 Z 🕅	\overline{x} PN	Clustering/PC	A • 🎊 💁 🕻	0	8				
暾	Normalization	 Quality - 	Tests •	Proteomic	ruler 🔹 🧱 😽	\cong 1D 2D	P1 🛕	Misc. •	- 📕 🗲 🕻	*					
Load			Pr	ocessing				A	nalysis		Aulti-proc.	Export			
matrix	matrix2 matrix	x4 matrix5 matrix	x6 matrix	7 matrix8 matrix9											
Data	Histogram														
: 🙊 :	En rok 🖂 🖾 🛃 🚏				Points Ca	tegories									
		-	_		:	Select	ion from t	able 🔹							
ş						Fill color	Border	Protein	Majority	Protein	Gene	Proteins	Matr	Matr	Matr
uno	n n n						color	IDs T	nrotein	names	names	1 Totelling	30h/0h 1	30h/0h 2	30h/0h 3
0	, i i i i	1			1	_		AUAV11	AUAV11	Ubiquitin	UBA6	0	0.593930	0.219234	0.475309
		lun			2	_		A0FGR8	A0FGR8	Extende	ESYT2	5	-0.50841	-1.22637	-0.51403
	-5 0	5			3			A0JLT2;	A0JLT2;	Mediator	MED19	2	NaN	NaN	NaN
	Matr 30ł	n/0h_1			4			A0JNW5	A0JNW5	UHRF1	UHRF1B	1	0.817614	NaN	NaN
					-	۳ ۲		A0MZ66	A0MZ66	Shootin-1	KIAA1598	8	NaN	NaN	NaN
ints	L			Proteins a	re now			A0PJW6	A0PJW6	Transme	TMEM223	3	NaN	NaN	-0.45263
Col	, i i i i			separated	into			Q15652;	Q15652;	Probable	JMJD1C	3	NaN	NaN	NaN
		1		100 him	inte			A0T4C8	A0T4C8	Sphingo	SPHK2	6	NaN	NaN	NaN
		100 mm		100 bins				A1A4S6	A1A4S6	Rho GTP	ARHGAP	3	NaN	NaN	0.446280
	-5 Matr 30ł	n/0h_2			10			A1L020	A1L020	RNA-bin	МЕХЗА	1	NaN	NaN	NaN
	dda				11			A1L0T0;	A1L0T0	Acetolac	ILVBL	5	-0.60101	-0.31493	-0.23719
Its					12			A1L188	A1L188	Unchara	C17orf89	1	NaN	NaN	NaN
our		L			13			A1X283;	A1X283	SH3 and	SH3PXD	9	0.870519	0.668951	0.711167
Ŭ	,				14			Q86X10	Q86X10	Ral GTP	RALGAP	7	-0.90830	NaN	-0.33588
		lillion			15			A2A2G4	A2A2G4	Dolichyl p	ALG6	2	NaN	NaN	-0.83752
	-5 0 Matr 304	1/0h 3			16			A2A2Q9	A2A2Q9	Unchara	C20orf4	2	0.268208	NaN	0.408490
	11120 001				47			D40000	D40000	DALA NO.	DDM24	-	NI-NI	NI-NI	N1-N1

<mark>2</mark> C	Sess	ion3_only 0 vs 30h_2	- Perseus	(_						-				
	м	atrix															
- 🐮 🕸	Ba	sic • Filter	rows *	Annot. columns • Imputa	ation	 Cluste 	ring • 🚦	🗴 p ₂	Visualization •	÷	₩ ≥ 嘂 #	Basic	•				
E	Re	arrange 🔹 🛛 Filter	columns •	Annot. rows • Modifi	icatior	ns 🔹 🕅 🗹	💶 Z 💎 :	$\overline{\chi}$ p _N	Clustering/PC/	۵ - ۵	x 💊 😻 7						
®	No	ormalization 🔹 Quali	ity •	Tests • Protec	omic r	uler 🔹 📰 🥳	🗠 1D 2D I	P ₁	Misc. •	1	l 🧲 🖉 👘						
Load				Processing					Ar	nalysis		Mu	ılti-proc.	Export			
matri	x1 ma	trix2 matrix4 mat	rix5 matrix6	5 matrix7 matrix8 mat	trix9												
Data	Histo	gram															
1 20	ln rok I	- 11 🔽 📆 📜				Points C	ategories										
							Selectio	on from ta	able 🔹								
ts						7	Fill color	Border	Protein	Maio	Color			×	Matr	Matr	Matr
Cour		1					5	color	IDs A0AVT1	ford A0A	Basic colors:	:			30h/0h 1 0.593930	30h/0h 2 0 219234	30h/0h_3 0.475309
Ŭ		ALC: N				2			A0FGR8	AOF					-0.50841	-1.22637	-0.51403
	Ļ		Mor	eover one		3			A0JLT2:	A0JI					NaN	NaN	NaN
	-5	Matr 30h/0h_1		d alaa aalaat		4			A0JNW5	A0J				1	0.817614	NaN	NaN
		.lt	cour	d also select		5			A0MZ66	A0M					NaN	NaN	NaN
nts			prot	ein groups		6			A0PJW6	A0P					NaN	NaN	-0.45263
Cou		, 1	and	change their		7			Q15652;	Q15					NaN	NaN	NaN
		a de la companya de la	colo	r in the		8			A0T4C8	AOT	Custom color	rs:			NaN	NaN	NaN
	-5			i ili tile		9			A1A4S6	A1A					NaN	NaN	0.446280
		Matr 30h/0h_2	histo	ogram.		10			A1L020	A1L					NaN	NaN	NaN
		.titu			-	11			A1L0T0;	A1L					-0.60101	-0.31493	-0.23719
uts						12			A1L188	A1L	Det	fine Custor	m Colors >>		NaN	NaN	NaN
Cou						13			A1X283;	A1X	ОК	Can	cel		0.870519	0.668951	0.711167
						14			Q86X10	Q86					-0.90830	NaN	-0.33588
	-5	0	5			15			A2A2G4	A2A	2G4 Dolic	chyl p A	ALG6	2	NaN	NaN	-0.83752
		Matr 30h/0h_3	~			16			A2A2Q9	A2A	2Q9 Unch	nara C	C20orf4	2	0.268208	NaN	0.408490
						17			P42696;	P426	596; RNA-	-bín F	RBM34	5	NaN	NaN	NaN

210	Sessions_only UVs	30n_2 - Perseus									_		-		
•	Matrix														
1	Basic 🔹	Filter rows •	Annot. columns •	Imputation •	Clusteri	ng •	🐸 P2	Visualization	- <mark>+</mark> == :	🔄 🚚 📔 Basi	ic •				
三国	Rearrange •	Filter columns 🔹	Annot. rows •	Modifications •	f(x) 🗹 🛛	💶 Z 🏹	$ar{x}$ PN	Clustering/PC	A • 🔣 💁 🛔	20 🖪	-R				
1	Normalization •	Quality 🕶	Tests 🔹	Proteomic ruler	• 📑 🤤 (\simeq 1D 2D	P1 🛕	Misc. •	- 📕 🤤 🕻	*					
Load			Processing	3				A	nalysis	1	Multi-proc.	Export			
matrix	1 matrix2 matrix4	4 matrix5 matrix	6 matrix7 matr	ix8 matrix9											
Data	Histogram														
: 🗴 (n rok 🖂 🖾 🛐 🛣			Po	ints Cat	tegories									
	4					Selecti	on from t	able 🔻							
<u>so</u>	, lit, ^{Lit}	Export Image				Fill color	Border	Protein	Majority	Protein	Gene	Proteins	Matr	Matr	Matr
onu	dia.	·\\					color	IDs	nrotein	names	names	r roteinis	30h/0h 1	30h/0h 2	30h/0h 3
0	1 Martin			$\frac{1}{2}$				AUAVT1	AUAVT1	Obiquitin	UBA6	0	0.593930	0.219234	0.475309
		m		2				AUFGR8	AUFGR8	Extende	ESTIZ	5	-0.50841	-1.22037	-0.51403
	-5 0 Matr 30b/	5 0h 1	\mathbf{i}	3			F	ile name:	Histogram	n.png				NaN	NaN
	Maa oon	011_1		4	_	5	C	I		LL Net	di Combi			NaN	NaN
ts.	, , (The	isto grano		1	Sav	e as type:	PING Porta	ble Netwo	rk Graphi	cs (.png)		NaN	-0.45263
no			Iner	nstogram					PNG Porta	ble Netwo	rk Graphi	cs (.png)		NaN	NaN
0	,		can b	e exporte	d 🛉		Hide Fo	Iders	CIE Granhi	ne Docum	ent Form	at (.pdf)		NaN	NaN
[lin m	to dif	ferent file				indicity.	IPG IPFG (ing: iif: ing	niger om er inea)	nac (.gir)		NaN	0.446280
	-5 0 Matr 30h/	5 0h 2	form	atc	-	<u> </u>			TIF Tagged	I Image Fil	e Format	(.tif:.tiff)		NaN	NaN
	dd.		TOTT	ats.					WMF Wind	lows Meta	File (.wm	nf)		0.31493	-0.23719
ts.				12	2				BMP Wind	ows Bitma	p (.bmp)			NaN	NaN
uno				1:	3				EMF Wind	ows Enhar	iced Meta	a File (.emf)	0.668951	0.711167
0	, Januari, J			14	4			Q86X10	Q86X10	Ral GTP	RALGAP	7	-0.90830	NaN	-0.33588
L		http://www.com/com/com/com/com/com/com/com/com/com/		1:	5			A2A2G4	A2A2G4	Dolichyl p	ALG6	2	NaN	NaN	-0.83752
	-5 0 Matr 30h/	5 0h 3		10	5			A2A2Q9	A2A2Q9	Unchara	C20orf4	2	0.268208	NaN	0.408490
				4	,			D40000	D40000	DATA NO.	DDM04	-	NI-81	NI-NI	NI-NI

We have a lot of identifications without or only a limited amount of quantitative values (NaN). Since we want to have very reliable quantitative data ,we now remove all entries which have insufficient entries.

1 0 1 36	essions_only 0 vs	30n_2 - Perse	eus	-			_					
•	Matrix											
★ 🧐 亘 🔝	Basic • Rearrange • Normalization •	Filter rows • Filter column	Annot. colu is • Annot. row: Tests •	ımns ▼ Imp s ▼ Moc Prot	utation • difications • eomic ruler	Clusteri f(x) 🗹	ng • • Z 🐨 : ∝ 10 20	$\overline{\mathbf{x}}$ \mathbf{p}_2 V $\overline{\mathbf{x}}$ $\mathbf{p}_{\mathbf{N}}$ C	'isualization lustering/P ∕lisc. ▼	• + # 日 CA • 公 • CA		Basi
Load	Normalization	Quanty	Proc	essing	conne ruier	894 °V	10 20			Analysis	-	
LOad			PIOC	essing m	natrix9					Analysis		
Data US	matrix2 matrix4	matrixo m	latrixo matrix/	matrixe								
HIS	stogram	0	0		(1	L	1		1		
	Matr 30h/0h_1	Matr 30h/0h_2	Matr 30h/0h_3	PEP	Intensity	Intensity L	Intensity H	Protein IDs	Majority protein IDs	Protein names	Gene names	Pro
Туре	Expression	Expression	Expression	Numeric	Numeric	Numeric	Numeric	Text	Text	Text	Text	Tex
1	0.593931	0.219235	0.47531	0	953960	699960	254000	A0AVT	A0AVT	Ubiqui	UBA6	6
2	-0.508414	-1.22637	-0.514036	0	257690	177260	804350	A0FGR	A0FGR	Extend	ESYT2	5
3	NaN	NaN	NaN	3.4808	670070	596980	7308500	A0JLT	A0JLT	Mediat	MED19	2
4	0.817615	NaN	NaN	8.1766	119360	977740	215880	A0JNW5	A0JNW5	UHRF1	UHRF1	1
5	NaN	NaN	NaN	9.5202	514250	435080	791680	A0MZ6	A0MZ6	Shooti	KIAA1	8
6	NaN	NaN	-0.452631	4.8278	492420	386300	106120	A0PJW	A0PJW6	Transm	TMEM	3
7	NaN	NaN	NaN	1.8473	583650	380530	203110	Q1565	Q1565	Probab	JMJD1C	3
8	NaN	NaN	NaN	4.2013	8772200	8038000	734270	A0T4C	A0T4C	Sphing	SPHK2	6
9	NaN	NaN	0.44628	3.3301	403140	285770	117380	A1A4S	A1A4S	Rho G	ARHG	3
10	NaN	NaN	NaN	2.5025	330490	296430	3406000	A1L020	A1L020	RNA-b	MEX3A	1
11	-0.601011	-0.314939	-0.237196	0	327420	267380	600400	A1L0T	A1L0T0	Acetola	ILVBL	5
12	NaN	NaN	NaN	2.4735	975370	751600	223770	A1L188	A1L188	Uncha	C17orf	1
13	0.87052	0.668951	0.711168	0	179760	153430	263300	A1X28	A1X283	SH3 an	SH3PX	9
14	-0.908305	NaN	-0.335885	1.8734	241310	204190	371160	Q86X1	Q86X1	Ral GT	RALGA	7
15	NaN	NaN	-0.837522	2.1456	772010	592580	179420	A2A2G	A2A2G	Dolichy	ALG6	2
16	0.268208	NaN	0.408491	0	261260	224830	364340	A2A2Q	A2A2Q	Uncha	C20orf4	2
17	NaN	NaN	NaN	3.9044	309930	244260	656670	P4269	P4269	RNA-b	RBM34	5
18	NaN	NaN	NaN	1.6859	294430	201560	928690	Q1467	Q1467	KN mo	KANK1	6

We now remove all entries which have insufficient entries. To be very stringent, we remove everything where **only one or two ratios** are present, but this is an individual

The stringent filtering for valid values reduced the number of protein groups from 6767 to 3659

	log2 0h_1	log2 0h_2	log2 0h_3	log2 Matr 30h_1	log2 Matr 30h_2	log2 Matr 30h_3	PEP	Intensity	Intensity L	Intensity H
Туре	Expres	Expres	Expres.	Expres	Expres	Expres	Numeric	Numeric	Numeric	Numeric
Group1	0h	0h	0h	Matr 3	Matr 3	Matr 3				
1	0.32336	0.3477	0.6876	1.06594	0.5443	1.17719	0	953960	699960	254000
2	-0.375	-0.026	0.0991	-0.735	-1.27522	-0.400	0	257690	177260	804350
3	NaN	NaN	NaN	NaN	NaN	NaN	3.4808	670070	596980	7308500
4	0.1145	NaN	NaN	1.08076	NaN	0.6020	8.1766	119360	977740	215880
5	NaN	NaN	NaN	NaN	NaN	NaN	9.5202	514250	435080	791680
6	NaN	NaN	-0.195	NaN	NaN	-0.633	4.8278	492420	386300	106120
7	NaN	NaN	NaN	NaN	NaN	NaN	1.8473	583650	380530	203110
8	NaN	NaN	NaN	NaN	NaN	NaN	4.2013	8772200	8038000	734270
9	0.7395	NaN	-1.75884	NaN	NaN	-1.29838	3.3301	403140	285770	117380
10	NaN	NaN	NaN	NaN	NaN	NaN	2.5025	330490	296430	3406000
11	0.1968	0.1155	-0.185	-0.255	-0.221	-0.408	0	327420	267380	600400
12	NaN	NaN	NaN	NaN	NaN	NaN	2.4735	975370	751600	223770
13	-1.18344	-1.27829	-0.78202	-0.164	-0.631	-0.056	0	179760	153430	263300
14	-0.080	-0.240	-1.51774	-0.840	NaN	-1.83945	1.8734	241310	204190	371160
15	NaN	NaN	0.3710	-0.873	NaN	-0.452	2.1456	772010	592580	179420
16	-0.910	-0.675	-0.87136	-0.493	NaN	-0.448	0	261260	224830	364340
17	NaN	-0.314	NaN	NaN	NaN	NaN	3.9044	309930	244260	656670
18	NaN	NaN	NaN	0.9692	NaN	-0.875	1.6859	294430	201560	928690
19	NaN	NaN	NaN	NaN	NaN	NaN	1.5469	0	0	0
20	-0.681	-0.399	0.0365	-0.418	-0.585	-0.346	0	132740	110890	218430
21	0.60672	1.19899	-1.00089	NaN	NaN	-1.60414	4.4591	870720	690160	180560
22	NaN	NaN	NaN	NaN	NaN	NaN	3.976E	123110	7939000	4372300
23	0.2877	0.2027	0.4743	-0.109	0.1491	0.3706	0	108150	807580	273950
24	-0.844	-1.02683	0.8375	-1.49938	-1.36575	-0.016	0	126030	967480	292790
25	NaN	-0.239	-0.050	NaN	0.2733	NaN	1.271E	709720	553200	156520
26	NaN	NaN	NaN	NaN	NaN	NaN	9.8889	781840	667720	114120
27	0.0058	-0.564	NaN	NaN	NaN	NaN	6.8177	893840	669650	224180
28	NaN	NaN	1.32873	NaN	NaN	NaN	2.0788	262730	166530	962020
29	-0.399	-1.57006	-0.904	-0.70792	NaN	-1.32439	0	201990	167490	344940
30	-0.723	-0.725	-0.245	-0.206	-0.455	-0.587	2.2871	227520	188520	390020
31	NaN	NaN	NaN	NaN	NaN	0.1196	1.1909	115210	652660	499420
6767.1										
oror items										

Type Expres Expres Expres Numeric Numeric <t< th=""><th></th><th>Matr 30h/0h</th><th>Matr 30h/0h</th><th>Matr 30h/0h</th><th>PEP</th><th>Intensity</th><th>Intensity L</th><th>Intensity H</th></t<>		Matr 30h/0h	Matr 30h/0h	Matr 30h/0h	PEP	Intensity	Intensity L	Intensity H
1 0.5939 0.2192 0.47531 0 953960 699960 254000. 2 -0.508 -1.22637 -0.514 0 257690 177260 804350. 3 -0.601 -0.314 -0.237 0 327420 267380 600400. 4 0.87052 0.6689 0.7111 0 179760 153430 263300. 5 0.1140 -0.16255 -0.397 0 132740 110890 218430 6 -0.546 -0.031 -0.117 0 108150 807580 273950 7 -0.803 -0.316 -0.868 0 126030 967480 292790 8 0.3684 0.2924 -0.342 2.4205 355890 276620 792720 10 0.2301 0.4883 0 675290 524240 151050 12 -1.99157 -2.42629 -1.55667	Туре	Expres	Expres	Expres	Numeric	Numeric	Numeric	Numeric
2 -0.508 -1.22637 -0.514 0 257690 177260 804350 3 -0.601 -0.314 -0.237 0 327420 267380 600400 4 0.87052 0.6689 0.7111 0 179760 153430 263300 5 0.1140 -0.16255 -0.397 0 132740 110890 218430 6 -0.546 -0.031 -0.117 0 108150 807580 273950 7 -0.803 -0.316 -0.868 0 126030 967480 292790 8 0.3684 0.2924 -0.342 2.4205 355890 276620 792720 10 0.2301 0.4208 0.8483 0 675290 524240 1515050 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080 13 -1.58235 <td>1</td> <td>0.5939</td> <td>0.2192</td> <td>0.47531</td> <td>0</td> <td>953960</td> <td>699960</td> <td>254000</td>	1	0.5939	0.2192	0.47531	0	953960	699960	254000
3 -0.601 -0.314 -0.237 0 327420 267380 600400. 4 0.87052 0.6689 0.7111 0 179760 153430 263300 5 0.1140 -0.16255 -0.397 0 132740 110890 218430 6 -0.546 -0.031 -0.117 0 108150 807580 273950 7 -0.803 -0.316 -0.868 0 126030 967480 292790 8 0.3684 0.2924 -0.356 2.2871 227520 188520 390020 9 -2.34255 -0.726 -0.342 2.4205 355890 276620 792720 10 0.727 -0.420 -0.8483 0 675290 524240 151050 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080 13 -1.58235	2	-0.508	-1.22637	-0.514	0	257690	177260	804350
4 0.87052 0.6689 0.7111 0 179760 153430 263300. 5 0.1140 0.16255 0.397 0 132740 110890 218430. 6 -0.546 -0.031 -0.117 0 108150 807580 273950. 7 -0.803 -0.316 -0.868 0 126030 967480 292790. 8 0.3684 0.2924 -0.356 2.2871 227520 188520 390020 9 -2.34255 -0.726 -0.342 2.4205 355890 276620 792720 10 0.2301 0.0898 0.8546 0 133150 112270 208800 11 -0.727 -0.420 -0.8483 0 675290 524240 151050 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080 13 -1.58235 <	3	-0.601	-0.314	-0.237	0	327420	267380	600400
5 0.1140 -0.16255 -0.397 0 132740 110890 218430 6 -0.546 -0.031 -0.117 0 108150 807580 273950. 7 -0.803 0.316 -0.868 0 126030 967480 292790. 8 0.3684 0.2924 -0.356 2.2871 227520 188520 390020. 9 -2.34255 -0.726 -0.342 2.4205 355890 276620 792720 10 0.2301 0.0898 0.8546 0 133150 112270 208800 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080 13 -1.58235 -0.75516 -0.458 1.44955 565120 445340 119770 14 0.0174 0.5715 1.44353 1.0956 164890 380810 886330 15 <th< td=""><td>4</td><td>0.87052</td><td>0.6689</td><td>0.7111</td><td>0</td><td>179760</td><td>153430</td><td>263300</td></th<>	4	0.87052	0.6689	0.7111	0	179760	153430	263300
6 -0.546 -0.031 -0.117 0 108150 807580 273950. 7 -0.803 -0.316 -0.868 0 126030 967480 292790. 8 0.3684 0.2924 -0.356 2.2871 227520 188520 390020. 9 -2.34255 -0.726 -0.342 2.4205 355890 276620 792720. 10 0.2301 0.0898 0.8546 0 133150 112270 208800 11 -0.727 -0.420 -0.8483 0 675290 524240 151500 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080 13 -1.58235 -0.75516 -0.458 1.4495 565120 445340 119770 14 0.0174 0.5715 1.44353 1.0956 16489440 380810 886330 15 -	5	0.1140	-0.16255	-0.397	0	132740	110890	218430
7 -0.803 -0.316 -0.868 0 126030 967480 292790. 8 0.3684 0.2924 -0.356 2.2871 227520 188520 390020. 9 -2.34255 -0.726 -0.342 2.4205 355890 276620 792720. 10 0.2301 0.0898 0.8546 0 133150 112270 208800. 11 -0.727 -0.420 -0.8483 0 675290 524240 151050 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080 13 -1.58235 -0.75516 -0.458 1.44953 1.0956 164890 119330 455590 14 0.0174 0.5715 1.44353 1.0956 164890 380810 886330 15 -0.938 -0.699 -0.778 0 546080 504820 412560	6	-0.546	-0.031	-0.117	0	108150	807580	273950
8 0.3684 0.2924 -0.356 2.2871 227520 188520 390020. 9 -2.34255 -0.726 -0.342 2.4205 355890 276620 792720. 10 0.2301 0.0898 0.8546 0 133150 112270 208800. 11 -0.727 -0.420 -0.8483 0 675290 524240 15150 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080 13 -1.58235 -0.75516 -0.458 1.4495 565120 445340 119770 14 0.0174 0.5715 1.44353 1.0956 164890 119330 455590 15 -0.938 -0.699 -0.778 0 469440 380810 86330 16 0.5807 0.0633 0.2207 0 546080 442560 17 -0.502 -0	7	-0.803	-0.316	-0.868	0	126030	967480	292790
9 -2.34255 -0.726 -0.342 2.4205 355890 276620 792720. 10 0.2301 0.0898 0.8546 0 133150 112270 208800. 11 -0.727 -0.420 -0.8483 0 675290 524240 151050. 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080 13 -1.58235 0.75516 0.458 1.4495 565120 445340 119770 14 0.0174 0.5715 1.44353 1.0956 164890 119330 455590 15 -0.938 -0.699 -0.778 0 469440 380810 886330 16 0.5807 0.0633 0.2607 0 546080 412560 17 -0.502 -0.599 -0.510 0 546080 445760 612280. 20 0.4105 0.0788	8	0.3684	0.2924	-0.356	2.2871	227520	188520	390020
10 0.2301 0.0898 0.8546 0 133150 112270 208800. 11 -0.727 -0.420 -0.8483 0 675290 524240 151050. 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080. 13 -1.58235 -0.75516 -0.458 1.4495 565120 445340 119770. 14 0.0174 0.5715 1.44353 1.0956 164890 119330 455590 15 -0.938 -0.699 -0.778 0 469440 380810 886330 16 0.5807 0.0633 0.2607 0 129930 959180 340170 17 -0.502 -0.599 -0.510 0 546080 504820 412560 18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970 20 0.4105	9	-2.34255	-0.726	-0.342	2.4205	355890	276620	792720
11 -0.727 -0.420 -0.8483 0 675290 524240 151050. 12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080. 13 -1.58235 -0.75516 -0.458 1.4495 565120 445340 119770. 14 0.0174 0.5715 1.44353 1.0956 164890 119330 455590. 15 -0.938 -0.699 -0.778 0 469440 380810 886330. 16 0.5807 0.0633 0.2607 0 129930 959180 340170. 17 -0.502 -0.599 -0.510 0 546080 504820 412560. 18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970. 19 -0.397 -0.078 -0.131 0 275230 223270 519630. 20 0.4105	10	0.2301	0.0898	0.8546	0	133150	112270	208800
12 -1.99157 -2.42629 -1.55667 4.4294 805000 452920 352080. 13 -1.58235 -0.75516 -0.458 1.4495 565120 445340 119770. 14 0.0174 0.5715 1.44353 1.0956 164890 119330 455590. 15 -0.938 -0.699 -0.778 0 469440 380810 886330. 16 0.5807 0.0633 0.2607 0 129930 959180 340170. 17 -0.502 -0.599 -0.510 0 546080 504820 412560 18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970 19 -0.397 -0.078 -0.131 0 275230 223270 519630 20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280 21 -0.996	11	-0.727	-0.420	-0.8483	0	675290	524240	151050
13 -1.58235 -0.75516 -0.458 1.4495 565120 445340 119770. 14 0.0174 0.5715 1.44353 1.0956 164890 119330 455590. 15 -0.938 -0.699 -0.778 0 469440 380810 886330. 16 0.5807 0.0633 0.2607 0 129930 959180 340170. 17 -0.502 -0.599 -0.510 0 546080 504820 412560 18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970 19 -0.397 -0.078 -0.131 0 275230 223270 519630 20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280. 21 -0.996 0.3517 0.3372 0 295790 244110 516780 22 0.3779 </td <td>12</td> <td>-1.99157</td> <td>-2.42629</td> <td>-1.55667</td> <td>4.4294</td> <td>805000</td> <td>452920</td> <td>352080</td>	12	-1.99157	-2.42629	-1.55667	4.4294	805000	452920	352080
14 0.0174 0.5715 1.44353 1.0956 164890 119330 455590. 15 -0.938 -0.699 -0.778 0 469440 380810 886330. 16 0.5807 0.0633 0.2607 0 129930 959180 340170. 17 -0.502 -0.599 -0.510 0 546080 504820 412560 18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970 19 -0.397 -0.078 -0.131 0 275230 223270 519630 20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280 21 -0.996 0.3517 0.3372 0 295790 244110 516780 22 0.3779 0.4045 0.9109 0 500840 352390 148460 23 0.1964	13	-1.58235	-0.75516	-0.458	1.4495	565120	445340	119770
15 -0.938 -0.699 -0.778 0 469440 380810 886330. 16 0.5807 0.0633 0.2607 0 129930 959180 340170. 17 -0.502 -0.599 -0.510 0 546080 504820 412560 18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970 19 -0.397 -0.078 -0.131 0 275230 223270 519630 20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280 21 -0.996 0.3517 0.3372 0 295790 244110 516780 22 0.3779 0.4045 0.9109 0 500840 352390 148460 23 0.1964 0.2607 0.2628 0 877260 727830 149430 24 -0.546	14	0.0174	0.5715	1.44353	1.0956	164890	119330	455590
16 0.5807 0.0633 0.2607 0 129930 959180 340170. 17 -0.502 -0.599 -0.510 0 546080 504820 412560 18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970. 19 -0.397 -0.078 -0.131 0 275290 223270 519630 20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280 21 -0.996 0.3517 0.3372 0 295790 244110 516780 22 0.3779 0.4045 0.9109 0 500840 352390 148460 23 0.1964 0.2607 0.2628 0 877260 727830 149430 24 -0.546 -0.022 0.5366 3.2658 315310 230010 853000 25 -0.454	15	-0.938	-0.699	-0.778	0	469440	380810	886330
17 -0.502 -0.599 -0.510 0 546080 504820 412560 18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970 19 -0.397 -0.078 -0.131 0 275240 223270 519630 20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280 21 -0.996 0.3517 0.3372 0 295790 244110 516780 22 0.3779 0.4045 0.9109 0 500840 352390 148460 23 0.1964 0.2607 0.2628 0 877260 727830 149430 24 -0.546 -0.022 0.5366 3.2658 315310 230010 853000 25 -0.45406 -0.57 -0.302 0 958070 775620 182440 26 0.7390 <td>16</td> <td>0.5807</td> <td>0.0633</td> <td>0.2607</td> <td>0</td> <td>129930</td> <td>959180</td> <td>340170</td>	16	0.5807	0.0633	0.2607	0	129930	959180	340170
18 0.8317 0.22375 -0.665 3.7088 223750 180350 433970. 19 -0.397 -0.078 -0.131 0 275240 223270 519630 20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280 21 -0.996 0.3517 0.3372 0 295790 244110 516780 22 0.3779 0.4045 0.9109 0 500840 352390 148460 23 0.1964 0.2607 0.2628 0 877260 727830 149430 24 -0.546 -0.022 0.5366 3.2658 315310 230010 853000 25 -0.45406 -0.577 -0.302 0 958070 775620 182440 26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700 27 -0.366	17	-0.502	-0.599	-0.510	0	546080	504820	412560
19 -0.397 -0.078 -0.131 0 27529b 223270 519630. 20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280. 21 -0.996 0.3517 0.3372 0 295790 244110 516780. 22 0.3779 0.4045 0.9109 0 500840 352390 148460. 23 0.1964 0.2607 0.2628 0 877260 727830 149430. 24 -0.546 -0.022 0.5366 3.2658 315310 230010 853000. 25 -0.45406 -0.057 -0.302 0 958070 775620 182440. 26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700. 27 -0.366 0.3121 0.3022 1.3397 471640 397500 741420. 28 -0.073<	18	0.8317	0.22375	-0.665	3.7088	223750	180350	433970
20 0.4105 0.0889 0.2843 8.4587 506980 445760 612280. 21 -0.996 0.3517 0.3372 0 295790 244110 516780 22 0.3779 0.4045 0.9109 0 500840 352390 148460 23 0.1964 0.2607 0.2628 0 877260 727830 149430 24 -0.546 -0.022 0.5366 3.2658 315310 230010 853000 25 -0.45406 -0.057 -0.302 0 958070 775620 182440 26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700 27 -0.366 0.3121 0.3022 0 130930 104180 267440 28 -0.073 0.0286 -0.230 1.2656 38850 302620 862340 30	19	-0.397	-0.078	-0.131	0	275230	223270	519630
21 -0.996 0.3517 0.3372 0 295790 244110 516780. 22 0.3779 0.4045 0.9109 0 500840 352390 148460. 23 0.1964 0.2607 0.2628 0 877260 727830 149430. 24 -0.546 -0.022 0.5366 3.2658 315310 230010 853000. 25 -0.45406 -0.057 -0.302 0 958070 775620 182440. 26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700. 27 -0.366 0.3121 0.3022 0 130930 104180 267440. 28 -0.073 0.0226 -0.032 1.3397 471640 397500 741420. 29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340 30 0.28	20	0.4105	0.0889	0.2843	8.4587	506980	445760	612280
22 0.3779 0.4045 0.9109 0 500840 352390 148460. 23 0.1964 0.2607 0.2628 0 877260 727830 149430. 24 -0.546 -0.022 0.5366 3.2658 315310 230010 853000. 25 -0.45406 -0.057 -0.302 0 958070 775620 182440. 26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700 27 -0.366 0.3121 0.3022 0 130930 104180 267440 28 -0.073 0.0226 -0.032 1.3397 471640 397500 741420 29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340 30 0.2833 0.5188 -1.56155 3.5986 146440 112390 340480 31	21	-0.996	0.3517	0.3372	0	295790	244110	516780
23 0.1964 0.2607 0.2628 0 877260 727830 149430. 24 -0.546 -0.022 0.5366 3.2658 315310 23010 853000. 25 -0.45406 -0.057 -0.302 0 958070 775620 182440 26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700 27 -0.366 0.3121 0.3022 0 130930 104180 267440 28 -0.073 0.0226 -0.032 1.3397 471640 397500 741420 29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340 30 0.2833 0.5188 -1.56155 3.5986 146440 112390 4060910 31 -1.23813 0.2685 0.5002 0 100420 716160 <td>22</td> <td>0.3779</td> <td>0.4045</td> <td>0.9109</td> <td>0</td> <td>500840</td> <td>352390</td> <td>148460</td>	22	0.3779	0.4045	0.9109	0	500840	352390	148460
24 -0.546 -0.022 0.5366 3.2658 315310 23010 853000. 25 -0.45406 -0.057 -0.302 0 958070 775620 182440. 26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700. 27 -0.366 0.3121 0.3022 0 130930 104180 267440. 28 -0.073 0.0226 -0.032 1.3397 471640 397500 741420. 29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340 30 0.2833 0.5188 -1.56155 3.5986 146440 112390 340480. 31 -1.23813 0.2685 -1.08819 3.447E 329300 263210 660910 32 0.3256 0.2637 0.5002 0 100420 716160 288080.	23	0.1964	0.2607	0.2628	0	877260	727830	149430
25 -0.45406 -0.057 -0.302 0 958070 775620 182440. 26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700. 27 -0.366 0.3121 0.3022 0 130930 104180 267440. 28 -0.073 0.0226 -0.032 1.3397 471640 397500 741420. 29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340 30 0.2833 0.5188 -1.56155 3.5986 146440 112390 340480 31 -1.23813 0.2685 -1.08819 3.447E 329300 263210 660910 32 0.3256 0.2637 0.5002 0 100420 716160 288080	24	-0.546	-0.022	0.5366	3.2658	315310	230010	853000
26 0.7390 0.7589 1.08317 2.0943 173430 134560 388700. 27 -0.366 0.3121 0.3022 0 130930 104180 267440. 28 -0.073 0.0226 -0.032 1.3397 471640 397500 741420. 29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340 30 0.2833 0.5188 -1.56155 3.5986 146440 112390 340480 31 -1.23813 0.2685 -1.08819 3.447E 329300 263210 660910 32 0.3256 0.2637 0.5002 0 100420 716160 288080	25	-0.45406	-0.057	-0.302	0	958070	775620	182440
27 -0.366 0.3121 0.3022 0 130930 104180 267440. 28 -0.073 0.0226 -0.032 1.3397 471640 397500 741420. 29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340 30 0.2833 0.5188 -1.56155 3.5986 146440 112390 340480 31 -1.23813 0.2685 -1.08819 3.447E 329300 263210 660910 32 0.3256 0.2637 0.5002 0 100420 716160 288080	26	0.7390	0.7589	1.08317	2.0943	173430	134560	388700
28 -0.073 0.0226 -0.032 1.3397 471640 397500 741420. 29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340. 30 0.2833 0.5188 -1.56155 3.5986 146440 112390 340480. 31 -1.23813 0.2685 -1.08819 3.447E 329300 263210 660910 32 0.3256 0.2637 0.5002 0 100420 716160 288080	27	-0.366	0.3121	0.3022	0	130930	104180	267440
29 -0.412 0.0687 -0.230 1.2656 388850 302620 862340 30 0.2833 0.5188 -1.56155 3.5986 146440 112390 340480 31 -1.23813 0.2685 -1.08819 3.447E 329300 263210 660910 32 0.3256 0.2637 0.5002 0 100420 716160 288080	28	-0.073	0.0226	-0.032	1.3397	471640	397500	741420
30 0.2833 0.5188 -1.56155 3.5986 146440 112390 340480. 31 -1.23813 0.2685 -1.08819 3.447E 329300 263210 660910. 32 0.3256 0.2637 0.5002 0 100420 716160 288080.	29	-0.412	0.0687	-0.230	1.2656	388850	302620	862340
31 -1.23813 0.2685 -1.08819 3.447E 329300 263210 660910. 32 0.3256 0.2637 0.5002 0 100420 716160 288080.	30	0.2833	0.5188	-1.56155	3.5986	146440	112390	340480
32 0.3256 0.2637 0.5002 0 100420 716160 288080.	31	-1.23813	0.2685	-1.08819	3.447E	329300	263210	660910
	32	0.3256	0.2637	0.5002	0	100420	716160	288080
Jibbil stores	2650 itorra		_	_		_		

To see which protein groups are significantly changed between both samples (0 vs Matrigel30h) we now perform a one-sample t-test. In this test it is checked which protein groups are significantly differing from a fixed value. This value is set to 0 = ratio 1 = no change, because we work with logarithmic values.

Matrix					
Basic 🔹	Filter rows 🕶	Annot. columns •	Imputation •	Clustering • 🛛 🖉 🗛	Visualization
Rearrange 🔹	Filter columns 🔹	Annot. rows •	Modifications •	tee 🗹 💶 Z 🐨 🗴 PN	Clustering/PC
Normalization \bullet	Quality •	Tests •	Proteomic ruler •	📲 😽 🗠 1D 2D 🎦 🛕	Misc. 🔹
		p ₁ One-sample	tests 🛱		A
matrix2 matrix4	matrix5 matrix	p ₂ Two-sample	s One-sample tes	sts	
		p _N Multiple-sar	" D 0	ne sample-test for determin	ing if the
Matr Mat 30h/0h 30h	r Matr /0h 30h/0h	Two-way AN	" P ₁ "	ean is significantly different alue (typically 0).	from a fixed Ge
Expres Exp	res Expres	Numeric Numer	ic mannene ma		Te

To see which protein groups are significantly changed between both samples (0 vs Matrigel30h) we now perform a one-sample t-test. In this test it is checked which protein groups are significantly differing from a fixed value. **This value is set to 0** = ratio 1 = no change, because we work with logarithmic values.

Three new columns are created in the new matrix. One categorical and two numerical.

<mark>8</mark> 🗋 .	bession3_only	0 vs 30h_2	- Perseus	<i>.</i>	-				-					-		-
•	Matrix															
1 🧐	Basic 🔹	Filter	rows •	Annot. co	olumns 🔹 In	nputation •	Clust	ering •	2 P2	Visualiza	ation •	사고 꽤 타	📙 🛛 Basic	•		
三日	Rearrange 🔹	Filter	columns •	Annot. ro	ws∙ N	lodification	s 🔹 🕅 🖂	🕯 🎫 Z 🔊	\bar{x}_{P_N}	Clusteri	ng/PCA 🔹	A 💁 👪 🛛	7 🖪 🖬	8		
1	Normalizatio	n 🔹 Quali	ty •	Tests •	P	roteomic ru	iler 🔹 🧱 将	🕴 🗠 1D 21	D 🖭 🛕 👘	Misc. 🔹		📕 🖆 🕙				
Load				Pr	ocessing						Analys	sis	м	ulti-proc.	Export	
matrix1	matrix2 ma	trix4 mat	rix5 matrix	x6 matrix	7 matrix8	matrix9	matrix10	matrix11								
Data		N														
	Matr	Matr	Matr	t-test	PEP	Intensity	Intensity	Intensity	-Log t-test	t-test		Protein	Majority	Protein	Gene	Proteins
	30h/0h	30h/0h	30h/0h	Signific			LÍ	ΗÍ	p-value	Diffe	rence	IDs	protein IDs	names	names	
Туре	Expres	Expres	Expres	Catego	Numeric	Numeric	Numeric	Numeric	Numeric	Num	eric	Text	Text	Text	Text	Text
1	0.5939	0.2192	0.47531		0	953960	699960	254000	1.21943	0.429	9492	A0AVT	A0AVT	Ubiqui	UBA6	6
2	-0.508	-1.22637	-0.514.		0	257690	177260	804350	1.05556	-0.74	9608	A0FGR	A0FGR	Extend	ESYT2	5
3	-0.601	-0.314	-0.237		0	327420	267380	600400	1.13214	-0.38	4382	Nlune		bla	ILVBL	5
4	0.87052				0	179760	153430				213	NUIT	ierical	an	SH3PX	9
5	0.1140	Ca	tegoric	al	0	132740	110890	Nι	imerical		565	column	with th	ne 🚛	ADD1	14
6	-0.546	colur	nn mar	king	0	108150	807580	colun	nn with ⁻	the	662	t-test d	ifferen	ce _{er}	EPS15	3
7	-0.803	all si	ignifica	ntly 🛛	0	126030	967480	_	-log10-		793	= ave	rage of	ob	NBAS	4
8	0.3684	chan	ged pro	otein	2.2871	227520	188520	trans	formed	p-	452	expr	ession	b	GTPBP	8
9	-2.34255	gro	une at i	n –	2.4205	355890	276620			I.	3	2/P		sm	TMEM	3
10	0.2301			р –	0	133150	112270		value		.563	va	lues	4	CNOT1	6
11	-0.727	0.0	5 With a	a +	0	675290	524240	151050	1.45999	-0.66	5394	A5YVE	A5YVE	Pyruva	PDHA1	10
12	-1.99157	-2.42629	-1.55667	+	4.4294	805000	452920	352080	1.80909	-1.99	151	A6NC4	A6NC4	ADP-ri	BST1	5
13	-1.58235	-0.75516	-0.458		1.4495	565120	445340	119770	0.96181	-0.93	2107	Q9BX7	Q9BX7	TM2 d	TM2D1	2
14	0.0174	0.5715	1.44353		1.0956	164890	119330	455590	0.612201	0.677	7487	A6NCE	A6NCE	Microtu	MAP1L	2

Within these significantly changed protein groups we now filter for the ones with t-test difference ≤ -1 or ≥ 1 (= 2-fold change)

Within these significantly changed protein groups we now filter for the ones with a t-test difference ≤ -1 or ≥ 1 (= 2-fold change)

Next we rename the **two added categorical columns** with a meaningful name.

<mark>5</mark> 🗍 :	Session3_only	0 vs 30h_2	- Perseus	_	_	_			_		_		-				
Matrix																	
1	Basic 🔹	Filter	rows *	Annot. co	olumns • Ii	mputation •	Clust	ering •	避 p ₂	Visualizati	ion • +	器 🖂 💵	Basic 🕶				
EN	Rearrange 🔹	Filter	columns •	Annot. ro	ows ▼ _ N	Iodification	- 🗶 🗵	1 🖬 Z 🔊	\overline{x} PN	Clustering	/PCA 🔹 🎊	S 😺 7					
廢	Normalizatio	n • Quali	ity •	Tests 🔹	P	roteomic ru	iler / 🕎 将	🕴 🏹 1D 2	D 🖭 🛕 💧	Misc. 🔹	- Ja	년 🕙					
Load				Pr	ocessing		/				Analysis		Mult	ti-proc.	Export		
matrix1	matrix2 ma	trix4 mat	rix5 matri	x6 matrix	7 matrix8	matrix9	matrix10	matrix11	matrix12	matrix13	matrix14						
Data																	
	Matr 30h/0h	Matr 30h/0h	Matr 30h/0h	t-test Signific	Filter	Filter_	PEP	Intensity	Intensity L	Intensity H	-Log t-test p-value	t-test Differe	Protein IDs	Majority protein IDs	Protein names	Gene names	Proteins
Туре	Expres	Expres	Expres	Catego	Catego	Catego	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Text	Text	Text	Text	Text
1	0.5939	0.2192	0.47531		Discard	Disca	0	953960	699960	254000	1.21943	0.4294	A0AVT	A0AVT	Ubiqui	UBA6	6
2	-0.508	-1.22637	-0.514		Discard	Discard	0	257690	177260	804350	1.05556	-0.749	A0FGR	A0FGR	Extend	ESYT2	5
3	-0.601	-0.314	-0.237		Discard	Discard	0	327420	267380	600400	1.13214	-0.384	A1L0T	A1L0T0	Acetola	ILVBL	5
4	0.87052	0.6689	0.7111	+	Discard	Discard	0	179760	153430	263300	2.17871	0.7502	A1X28	A1X283	SH3 an	SH3PX	9
5	0.1140	-0.16255	-0.397		Discard	Discard	0	132740	110890	218430	0.3762	-0.148	P3561	P3561	Alpha	ADD1	14
6	-0.546	-0.031	-0.117		Discard	Discard	0	108150	807580	273950	0.5483	-0.231	Q9UBC	Q9UBC	Epider	EPS15	3
7	-0.803	-0.316	-0.868		Discard	Discard	0	126030	967480	292790	1.2028	-0.662	A2RRP	A2RRP	Neurob	NBAS	4
8	0.3684	0.2924	-0.356		Discard	Discard	2.2871	227520	188520	390020	0.1535	0.1014	A4D1E	A4D1E	GTP-b	GTPBP	8
9	-2.34255	-0.726	-0.342		Discard	Кеер	2.4205	355890	276620	792720	0.6891	-1.1373	A5PLL	A5PLL	Transm	TMEM	3
10	0.2301	0.0898	0.8546		Discard	Discard	0	133150	112270	208800	0.6240	0.3915	A5YKK	A5YKK	CCR4	CNOT1	6
11	-0.727	-0.420	-0.8483	+	Discard	Discard	0	675290	524240	151050	1.45999	-0.665	A5YVE	A5YVE	Pyruva	PDHA1	10
12	-1.99157	-2.42629	-1.55667	+	Discard	Кеер	4.4294	805000	452920	352080	1.80909	-1.99151	A6NC4	A6NC4	ADP-ri	BST1	5
13	-1.58235	-0.75516	-0.458		Discard	Discard	1.4495	565120	445340	119770	0.96181	-0.932	Q9BX7	Q9BX7	TM2 d	TM2D1	2
14	0.0174	0.5715	1.44353		Discard	Discard	1.0956	164890	119330	455590	0.6122	0.6774	A6NCE	A6NCE	Microtu	MAP1L	2
15	-0.938	-0.699	-0.778	+	Discard	Discard	0	469440	380810	886330	2.12225	-0.805	A6NCZ	A6NCZ	Sidero	SFXN3	2
16	0.5807	0.0633	0.2607		Discard	Discard	0	129930	959180	340170	0.7366	0.3015	A6NDG	A6NDG	Phosp	PGP	1
17	-0.502	-0.599	-0.510	+	Discard	Discard	0	546080	504820	412560	2.47666	-0.537	01473	01473	Acyl-co	ACOT8	10
18	0.8317	0.22375	-0.665		Discard	Discard	3.7088	223750	180350	433970	0.10081	0.1301	A6NDU8	A6NDU8	UPF06	C5orf51	1
19	-0.397	-0.078	-0.131		Discard	Discard	0	275230	223270	519630	0.7521	-0.202	A6NEM	A6NEM	Host c	HCFC1	6
20	0.4105	0.0889	0.2843		Discard	Discard	8.4587	506980	445760	612280	0.9671	0.2612	A6NFN	A6NFN	Abl inte	ABI1	15
21	-0.996	0.3517	0.3372		Discard	Discard	0	295790	244110	516780	0.0757	-0.102	Q1356	Q1356	NEDD	NAE1	4
22	0.3779	0.4045	0.9109		Discard	Discard	0	500840	352390	148460	1.0818	0.5644	A6NFX	A6NFX	ADP-s	NUDT5	7
23	0.1964	0.2607	0.2628	+	Discard	Discard	0	877260	727830	149430	2.08932	0.2400	A6NG5	A6NG5	Beta-p	PARVB	7
Next we rename the **two added categorical columns** with a meaningful name.

Ma	atrix			
Bas	ic •	Filter rows •	Annot. colum	ns 🕶 Im
Rea	arrange 🔹	Filter columns 🔹	Annot. rows •	Mo
	Change colu	mn type 🧰		Pro
	Rename colu	imns 🙀		ng
	Rename colu	Renarive column	15	itriv8
	Combine an	ⁿ New names car	n be specified fo	or 📄
	Duplicate co	each expression	n column. The n	ew
	Reorder/rem	iove columns	a in explicitly.	go
	Remove em	oty columns 🙃		ard
	Т	· · · · · · · · · · · ·		ard
	Transpose	8		ard
	Sort by colu	mn 🗛		ard
	Fill categoric	al columns 👖		ard
	De-hyphena	te ids 👩		ard
	Expand mult	i-numeric and text	columns 👩	ard
		_		ard
	Unique value	es 🔛		ard
	Convert mul	ti-numeric column	A	ard
	Combine cat	egorical columns	9	ard
	Process text	column 🙀		ard
	Search text of	olumn 👝		ard
T	0.9380.0	099U.//8	+ UIS	card

Matr 30h/0h_1	Matr 30h/0h 1
Matr 30h/0h_2	Matr 30h/0h_2
Matr 30h/0h_3	Matr 30h/0h_3
PEP	PEP
Intensity	Intensity
Intensity L	Intensity L
Intensity H	Intensity H
-Log t-test p-value	-Log t-test p-value
t-test Difference	t-test Difference
t-test Significant	t-test Significant
Filter	ratio =>1
Filter_	ratio <=-1
Protein IDs	Protein IDs
Majority protein IDs	Majority protein IDs
Protein names	Protein names
Gene names	Gene names
Proteins	Proteins

Next we rename the **two added categorical columns** with a meaningful name.

	Session3_only U vs 3Uh_2 - Perseus																
•	Matrix																
1 🐐	Basic 🔹	Filter	rows *	Annot. columns •	Imputatio	n • Clusterir	ng • 🛛	😃 📴 🔰 V	isualization	- 井	E 🗠 🚛 👔	Basic 🔹		-			
亘 🛃	Rearrange •	Filter	columns •	Annot. rows 🔹	Modificat	ions 🔹 🚺 🗹 🗖	🛛 Z 🝸 :	\bar{x} P _N ⊂	lustering/P(CA 🔹 🎊 🔦	0 😃 🔽	FR FR					
1	Normalizatio	on 🔹 Qual	ity •	Tests 🔹	Proteomi	: ruler 🔹 🕎 🤯 S	× 1D 2D	Р1 🛕 🛛 М	lisc. 🕶	🚽 🛃 🕻	W						
Load				Processing	,				A	Analysis		Multi-p	roc. E	xport			
matrix1	matrix2 ma	atrix4 mat	rix5 matri	x6 matrix7 matr	ix8 matrix	9 matrix10 m	atrix11 m	atrix12 m	atrix13 m	atrix14 ma	trix15						
Data																	
	Matr Matr Matr Significant ratio >=1 ratio <=-1																
Туре	Expres	Expres	Expres	Category	Catego	Category	Numeric	Numeric	Numeric	Numeric	Numeric	Numeric	Text	Text	Text	Text	Text
1	0.5939	0.2192	0.47531		Discard	Discard	0	953960	699960	254000	1.21943	0.4294	A0AVT	A0AVT	Ubiqui	UBA6	6
2	-0.508	-1.22637	-0.514		Discard	Discard	0	257690	177260	804350	1.05556	-0.749	A0FGR	A0FGR	Extend	ESYT2	5
3	-0.601	-0.314	-0.237		Discard	Discard	0	327420	267380	600400	1.13214	-0.384	A1L0T	A1L0T0	Acetola	ILVBL	5
4	0.87052	0.6689	0.7111	+	Discard	Discard	0	179760	153430	263300	2.17871	0.7502	A1X28	A1X283	SH3 an	SH3PX	9
5	0.1140	-0.16255	-0.397		Discard	Discard	0	132740	110890	218430	0.3762	-0.148	P3561	P3561	Alpha	ADD1	14
6	-0.546	-0.031	-0.117		Discard	Discard	0	108150	807580	273950	0.5483	-0.231	Q9UBC	Q9UBC	Epider	EPS15	3
7	-0.803	-0.316	-0.868		Discard	Discard	0	126030	967480	292790	1.2028	-0.662	A2RRP	A2RRP	Neurob	NBAS	4
8	0.3684	0.2924	-0.356		Discard	Discard	2.2871	227520	188520	390020	0.1535	0.1014	A4D1E	A4D1E	GTP-b	GTPBP	8
9	-2.34255	-0.726	-0.342		Discard	Кеер	2.4205	355890	276620	792720	0.6891	-1.1373	A5PLL	A5PLL	Transm	TMEM	3
10	0.2301	0.0898	0.8546		Discard	Discard	0	133150	112270	208800	0.6240	0.3915	A5YKK	A5YKK	CCR4	CNOT1	6
11	-0.727	-0.420	-0.8483	+	Discard	Discard	0	675290	524240	151050	1.45999	-0.665	A5YVE	A5YVE	Pyruva	PDHA1	10
12	-1.99157	-2.42629	-1.55667	+	Discard	Кеер	4.4294	805000	452920	352080	1.80909	-1.99151	A6NC4	A6NC4	ADP-ri	BST1	5
13	-1.58235	-0.75516	-0.458		Discard	Discard	1.4495	565120	445340	119770	0.96181	-0.932	Q9BX7	Q9BX7	TM2 d	TM2D1	2
14	0.0174	0.5715	1.44353		Discard	Discard	1.0956	164890	119330	455590	0.6122	0.6774	A6NCE	A6NCE	Microtu	MAP1L	2
15	-0.938	-0.699	-0.778	+	Discard	Discard	0	469440	380810	886330	2.12225	-0.805	A6NCZ	A6NCZ	Sidero	SFXN3	2
16	0.5807	0.0633	0.2607		Discard	Discard	0	129930	959180	340170	0.7366	0.3015	A6NDG	A6NDG	Phosp	PGP	1
17	-0.502	-0.599	-0.510	+	Discard	Discard	0	546080	504820	412560	2.47666	-0.537	01473	01473	Acyl-co	ACOT8	10
18	0.8317	0.22375	-0.665		Discard	Discard	3.7088	223750	180350	433970	0.10081	0.1301	A6NDU8	A6NDU8	UPF06	C5orf51	1
19	-0.397	-0.078	-0.131		Discard	Discard	0	275230	223270	519630	0.7521	-0.202	A6NEM	A6NEM	Host c	HCFC1	6
20	0.4105	0.0889	0.2843		Discard	Discard	8.4587	506980	445760	612280	0.9671	0.2612	A6NFN	A6NFN	Abl inte	ABI1	15
21	-0.996	0.3517	0.3372		Discard	Discard	0	295790	244110	516780	0.0757	-0.102	Q1356	Q1356	NEDD	NAE1	4
22	0.3779	0.4045	0.9109		Discard	Discard	0	500840	352390	148460	1.0818	0.5644	A6NFX	A6NFX	ADP-s	NUDT5	7
23	0.1964	0.2607	0.2628	+	Discard	Discard	0	877260	727830	149430	2.08932	0.2400	A6NG5	A6NG5	Beta-p	PARVB	7

Now we combine the new categorical columns with the t-test Significant column.

	Matrix							
E	Basic 🕶	Filter rows •	Annot, columns	 Imputatio 	n •			
F	Rearrange •	Filter columns	 Annot. rows • 	Modificat	ions •			
ľ	Change co	lumn type 👩		Proteomic	: ruler 🕶			
	Rename co	lumns a		ng				
				trix8 matrix	9 matr			
1	Rename co	olumns [reg. ex.] 🙀						
-	Combine a	nnotations 😭		ratio >=1	ratio <:			
	Duplicate (olumns 🙀		1000 - 1	Tauto 44			
	Reorder/re	move columns 👩		Catego	Catego			
	Pomovoor	matu columna 🗖		Discard	Discar			
	Remove er	npty columns 🙀		Discard	Discar			
	Transpose	ផ		Discard	Discar			
	Sort by col	umn 🔐		Discard	Discar			
	Fill catego	rical columns 🙃		Discard	Discar			
	De-hypher	ate ids 👩		Discard	Discar			
	e injplier			Discard	Discar			
	Expand mu	ilti-numeric and te	xt columns 🙀	Discard	Discar			
	Unique val	ues 🛱		Discard	Кеер			
	Convert m	ulti-numeric colum	in 😭	Discard	Discar			
ſ	Combine o	ategorical columns	. 0	Discard	Discar			
	Deserves		2	Discard	Keep			
	Process te	a column 😭	Combine categor	ical columns	ar			
	Search tex	Search text column 😭 Combine the terms in two						
	-0.9381	0.0990.//8	categorical colun categorical colun	ins to form a in.	new ar			

This leads to the generation of two additional categorical columns.

21012	Session3_only U vs 3Uh_2 - Perseus																	
	Matrix																	
1 1	Basic •	Filter	rows *	Annot. co	olumns 🕶 Ir	mputation •	Clustering •	🦉 P2 Visua	lization •	. 308 부	Ba:	sic 🔹						
EN	Rearrange •	Filter	columns •	Annot. ro	ows • N	Aodification	s 🔹 f(x) 🗹 🗾 🖊	$\forall \bar{x} p_N$ Clust	ering/PCA •	🔆 🕥 🚺	7 5	ER.						
1	Normalizatio	n • Quali	ity •	Tests 🔹	P	roteomic ru	ıler • 📑 🏹 🗠 1D	2D P1 🛕 Misc.	•	_1 Ci 🕻	7							
Load				Pr	rocessing				Anal	/sis		Multi-proc.	Ехро	rt				
matrix1	matrix2 ma	trix4 mat	rix5 matri	x6 matrix	7 matrix8	matrix9	matrix10 matrix1	1 matrix12 matri	x13 matrix	d4 matri	x15 matrix	_{x16} matrix	17					
Data		_	_		-				_	_	_	_						
	Matr 30h/0h	Matr 30h/0h	Matr 30h/0h	t-test Signific	ratio ≻=1	ratio <=-1	t-test Significant_ratio	t-test Significant_ratio	PEP	Intensity	Intensity L	Intensity H	-Log t-test	t-test Differe	Protein IDs	Majority protein	Protein names	Ger
Type	Expres	Expres	Expres	Catego	Catego	Catego	Category	Category	Numeric	Numeric	Numeric	Numeric	p-value Numeric	Numeric	Text	Text	Text	Tex
1	0.5939	0.2192	0.47531		Discard	Discard			0	953960	699960	254000	1,21943	0.4294	A0AVT	A0AVT	Ubiqui	UB/
2	-0.508	-1.22637	-0.514		Discard	Discard			0	257690	177260	804350	1.05556	-0.749	A0FGR	A0FGR	Extend	ESY
3	-0.601	-0.314	-0.237		Discard	Discard			0	327420	267380	600400	1.13214	-0.384	A1L0T	A1L0T0	Acetola	ILVE
4	0.87052	0.6689	0.7111	+	Discard	Discard	+_Discard	+_Discard	0	179760	153430	263300	2.17871	0.7502	A1X28	A1X283	SH3 an	. SH3
5	0.1140	-0.16255	-0.397		Discard	Discard			0	13274								ADE
6	-0.546	-0.031	-0.117		Discard	Discard			0	10815	Protei	in gro	ups si	gnific	antly	chang	ged	EPS
7	-0.803	-0.316	-0.868		Discard	Discard			0	12603	8,	chan	σ_d <	1 ar	, ma	rkod		. NB/
8	0.3684	0.2924	-0.356		Discard	Discard			2.2871	22752	G	chan	gcu	– ± ai		INCU		GTF
9	-2.34255	-0.726	-0.342		Discard	Кеер			2.4205	35589			with	'+Kee	р″			. TME
10	0.2301	0.0898	0.8546		Discard	Discard			0	133150	112270	208800	0.6240	0.3915	A5YKK	A5YKK	CCR4	CNO
11	-0.727	-0.420	-0.8483	+	Discard	Discard	+_Discard	+_Discard	0	675290	524240	151050	1.45999	-0.665	A5YVE	A5YVE	Pyruva	PDF
12	-1.99157	-2.42629	-1.55667	+	Discard	Кеер	+_Discard	+_Keep	4.4294	805000	452920	352080	1.80909	-1.99151	A6NC4	A6NC4	ADP-ri	BST
13	-1.58235	-0.75516	-0.458		Discard	Discard			1.4495	565120	445340	119770	0.96181	-0.932	Q9BX7	Q9BX7	TM2 d	TM2
14	0.0174	0.5715	1.44353		Discard	Discard			1.0956	164890	119330	455590	0.6122	0.6774	A6NCE	A6NCE	Microtu	MAF
15	-0.938	-0.699	-0.778	+	Discard	Discard	+_Discard	+_Discard	0	469440	380810	886330	2.12225	-0.805	A6NCZ	A6NCZ	Sidero	SFX
16	0.5807	0.0633	0.2607		Discard	Discard			0	129930	959180	340170	0.7366	0.3015	A6NDG	A6NDG	Phosp	PGF
17	-0.502	-0.599	-0.510	+	Discard	Discard	+_Discard	+_Discard	0	546080	504820	412560	2.47666	-0.537	O1473	01473	Acyl-co	ACC
Drote	nin aro	une ci	ignific	anthy	chang	bor			3.7088	223750	180350	433970	0.10081	0.1301	A6NDU8	A6NDU8	UPF06	C5c
PIOLE		ups si	igninc	antiy	Chang	geu			0	275230	223270	519630	0.7521	-0.202	A6NEM	A6NEM	Host c	HCF
	& char	iged >	>=1 ar	e mai	rked	-	\rightarrow		8.4587	506980	445760	612280	0.9671	0.2612	A6NFN	A6NFN	Abl inte	ABI
	with"+Keen"																	
	_	vvici1		۲					0	500840	352390	148460	1.0818	0.5644	A6NFX	A6NFX	ADP-s	NU
23	0.1964	0.2607	0.2628	+	Discard	Discard	+_Discard	+_Discard	0	877260	727830	149430	2.08932	0.2400	A6NG5	A6NG5	Beta-p	PAF
24	0 546	-0.022	0 5066		Discound	Discound						050000	0.0400	0.040	A CNIO I			DVN
	-0.540	-0.022	0.5300		Discard	Discard			3.2658	315310	230010	853000	0.0108	-0.010	ADINGJ	A6NGJ	Dynein	UII

An easy way to now visualize these significantly changed protein groups is a volcano plot, which is a type of **scatter plot**.

Scatter plot		
Matrix access	Columns	•
č		*
Cancel	Description	🛱 ок

An easy way to visualize these significantly changed protein groups can be achieved by a volcano plot, which is a type of **scatter plot**.

2101	I Dessions_only U vs 3Uh_2 - Perseus																	
•	Matrix																	
	Basic • Rearrange • Normalizatio	Filter Filter on • Quali	rows * columns * ity *	Annot. co Annot. ro Tests •	olumns • In ows • N	mputation • Aodification roteomic ru	Clustering • f(&) 🗹 💶 Z uler • 🧱 🍀 🌱 10	$\begin{array}{c c} & \mathbf{p}_2 \\ \hline & \mathbf{x} \\ \hline & \mathbf{x} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{p}_1 \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{z} \\ $	ering/PCA •	≥ 罪 4 ● ≪ ‰ ● 5 Ⅰ	- 🛄 🛛 Ba (7) 💽	sic •	н					
Load		4		PI	rocessing			1 1	Anal	ysis	_	Multi-proc.	Expo	rt				
matrix1	matrix2 ma	itrix4 mat	rix5 matri	x6 matrix	7 matrix8	matrix9	matrix10 matrix1	1 matrix12 matri	x13 matrix	<14 matrix	x15 matri	c16 matrix.	17					4 1
		<																4 1
	Máťr 30h/0h	Matr 30h/0h	Matr 30h/0h	t-test Signific	ratio >=1	ratio <=-1	t-test Significant_ratio	t-test Significant_ratio	PEP	Intensity	Intensity L	Intensity H	-Log t-test	t-test Differe	Protein IDs	Majority protein	Protein names	Gene names
Туре	Expres	Expres	Expres	Catego	Catego	Catego	Category	Category	Numeric	Numeric	Numeric	Numeric	p-value Numeric	Numeric	Text	Text	Text	Text
1	0.5939	0.2192	0.47531		Discard	Discard			0	953960	699960	254000	1,21943	0.4294	A0AVT	A0AVT.	Ubiqui	UBA6
2	-0.508	-1.22637	-0.514		Discard	Discard			0	257690	177260	804350	1.05556	-0.749	A0FGR	A0FGR	Extend	ESYT2
3	-0.601	-0.314	-0.237		Discard	Discard			0	327420	267380	600400	1.13214	-0.384	A1L0T	A1L0T0	Acetola	ILVBL
4	0.87052	0.6689	0.7111	+	Discard	Discard	+_Discard	+_Discard	0	179760	153430	263300	2.17871	0.7502	A1X28	A1X283	SH3 an	SH3PX
5	0.1140	-0.16255	-0.397		Discard	Discard			0	132740	110890	218430	0.3762	-0.148	P3561	P3561	Alpha	ADD1
6	-0.546	-0.031	-0.117		Discard	Discard			0	108150	807580	273950	0.5483	-0.231	Q9UBC	Q9UBC	Epider	EPS15
7	-0.803	-0.316	-0.868		Discard	Discard			0	126030	967480	292790	1.2028	-0.662	A2RRP	A2RRP	Neurob	NBAS
8	0.3684	0.2924	-0.356		Discard	Discard			2.2871	227520	188520	390020	0.1535	0.1014	A4D1E	A4D1E	GTP-b	GTPBP
9	-2.34255	-0.726	-0.342		Discard	Кеер			2.4205	355890	276620	792720	0.6891	-1.1373	A5PLL	A5PLL	Transm	TMEM
10	0.2301	0.0898	0.8546		Discard	Discard			0	133150	112270	208800	0.6240	0.3915	A5YKK	A5YKK	CCR4	CNOT1
11	-0.727	-0.420	-0.8483	+	Discard	Discard	+_Discard	+_Discard	0	675290	524240	151050	1.45999	-0.665	A5YVE	A5YVE	Pyruva	PDHA1
12	-1.99157	-2.42629	-1.55667	+	Discard	Кеер	+_Discard	+_Keep	4.4294	805000	452920	352080	1.80909	-1.99151	A6NC4	A6NC4	ADP-ri	BST1
13	-1.58235	-0.75516	-0.458		Discard	Discard			1.4495	565120	445340	119770	0.96181	-0.932	Q9BX7	Q9BX7	TM2 d	TM2D1
14	0.0174	0.5715	1.44353		Discard	Discard			1.0956	164890	119330	455590	0.6122	0.6774	A6NCE	A6NCE	Microtu	MAP1L
15	-0.938	-0.699	-0.778	+	Discard	Discard	+_Discard	+_Discard	0	469440	380810	886330	2.12225	-0.805	A6NCZ	A6NCZ	Sidero	SFXN3
16	0.5807	0.0633	0.2607		Discard	Discard			0	129930	959180	340170	0.7366	0.3015	A6NDG	A6NDG	Phosp	PGP
17	-0.502	-0.599	-0.510	+	Discard	Discard	+_Discard	+_Discard	0	546080	504820	412560	2.47666	-0.537	01473	01473	Acyl-co	ACOT8
18	0.8317	0.22375	-0.665		Discard	Discard			3.7088	223750	180350	433970	0.10081	0.1301	A6NDU8	A6NDU8	UPF06	C5orf51

In the scatter plot we now have to define, which columns should be plotted against each other. At the moment two **expression values** are selected.

	Matrix									
1	Basic • Filter rows • Annot. columns • Imputation • Clustering • 🦉 P ₂	Visualization • 井 嘂 这 📣	Basic 🔹							
E 🖸	Rearrange 🔹 Filter columns 🔹 Annot. rows 🔹 Modifications 🔹 🚧 🗾 🛛 🏹 🕱 🗛	Clustering/PCA + 🖄 💁 ¥ 🔽								
1	Normalization • Quality • Tests • Proteomic ruler • 🧱 🖓 🗠 1D 2D 🖭 🛕	Misc. • 🎿 🔁 🖤								
Load	Processing	Analysis	Multi-pro	c. Export						
matrix1	matrix2 matrix4 matrix5 matrix6 matrix7 matrix8 matrix9 matrix10 matrix11 Scatter plot							4 1		Selected x-axis
Data		Data						4 1	5	
- - ×			Curves							
		Mat	r 30h/0h_2							
ю-		<no< td=""><td>colors></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></no<>	colors>							
			No labels 🕶 8	B Protein	IDs •	Up to 🖓 🔹				
		Poir	nts Categorie	s Correlation	15				3	
4-			0 + +							
			Symb	ol Symbol	Symbol	Protein	Majority	Protein G		
		1	color		size 4	A0AVT1	A0AVT1	Diquitin U		
		2			4	A0FGR8	A0FGR8	Extende E		
		3			4	A1L0T0;	A1L0T0	Acetolac IL		Selected y-axis
01-		4			4	A1X283;	A1X283	SH3 and S		
		5			4	P35611	P35611	Alpha-ad A		
		6			4	Q9UBC2	Q9UBC2	Epiderm E		
. -		· 7			4	A2RRP1	A2RRP1	Neurobla N		
2		8			4	A4D1E9	A4D1E9	GTP-bin G		
40		9			4	ASPLL7;	ASPLL7;	Transme 11		
³		10			4	A51KK0	A5Y1/E0	Pyruvate P		
Matr		12			4	A6NC48	A6NC48	ADP-ribo B		
		13			4	Q9BX74	Q9BX74	TM2 dom TI		
7-		14			4	A6NCE7	A6NCE7	Microtub M		
		15			4	A6NCZ6	A6NCZ6	Siderofle S		
		16			4	A6NDG6	A6NDG6	Phospho P		
177		17			4	014734;	014734;	Acyl-coe A		
		18			4	A6NDU8	A6NDU8	UPF060 C		
9-		19			4	A6NEM2	A6NEM2	Host cell H		
		20			4	A6NFN2	A6NFN2	Abl inter A		
		21			4	Q13564;	Q13564;	NEDD8 N		
4-		22			4	A6NEX8	A6NEX8	ADP-sug N		
	۳.	23			4	A6NG I0	A6NG I0	Dynein li		
	D	24			4	A6NG.I4	A6NG.I4	39S ribo M		
ю_		25				46NHI 2		Tubulin a TI		
	-6 -4 -2 0 2 4	6 2650	items				_			
	Matr 30h/0h_1	2009	/ items						21	

For generation of the volcano plot, we now choose the t-test difference for the x- and the –log t-test p-value for the x-axis.

	Session3_only 0 vs	30n_2 - Perseus														
-	Matrix															
1 🛸	Basic 🔹	Filter rows •	Annot. columns •	Imputation •	Clustering • 🚳 P	Visualization •	山の三部を	Basic •								
ED	Rearrange •	Filter columns •	Annot. rows •	Modifications •	fee 🗹 💶 Z 🝸 $\bar{\chi}$ Pr	Clustering/PCA •	k 💁 😃 🔽									
13	Normalization •	Quality •	Tests •	Proteomic ruler	• 📰 😽 🗠 1D 2D 🎦 💧	Misc. •	L 🖆 💟									
Load			Processing			Analysi		Multi-proc.	Ехро	rt						
matrix1	matrix2 matrix4	matrix5 matrix	6 matrix7 matri	ix8 matrix9 ma	trix10 matrix11 matrix1	2 matrix13 matrix14	matrix15	natrix16 matrix	17					4 1 1		
Data	Scatter plot	indenx5 indenx			Indiate manage	indiate manage	T mounts T m	In the second se							/	Selected x-axis
Data		• •					Data									<u> </u>
: 🛃 🛠	SK SL ↔ ‡ D		5				Cata	Curves					/			
							t-test	Difference					<u> </u>	JE		
							-Log t	-test p-value								
							Matr.	30h/0h_1								
<u>ب</u>							Matr	30h/0h_2 30h/0h_3								
4							PEP	_								
							Intens	ity								
			1				Intens	aity H								
4-							-Log t	-test p-value							\mathbf{N}	
			-				t-test	Difference	_							· · · · · · · · · · · · · · · · · · ·
				•			2			4	A0FGR8	A0FGR8	Extende	E	\	Selected v-axis
3.5			• •		u		3			4	A1L0T0;	A1L0T0	Acetolac	IL		Sciected y axis
			• • • •				4			4	A1X283;	A1X283	SH3 and	S		
							5			4	P35611	P35611	Alpha-ad	A		
с –							6			4	Q9UBC2	Q9UBC2	Epiderm	E		
							7			4	A2RRP1	A2RRP1	Neurobla	N		
e							8			4	A4D1E9	A4D1E9	GTP-bin	G		
-Val							9			4	A5PLL7;	A5PLL7;	Transme	TI		
estp							10			4	A5YKK6	A5YKK6	CCR4-N	С		
Ę.							11			4	A5YVE9	A5YVE9	Pyruvate	P		
-~ F					8		12			4	A6NC48	A6NC48	ADP-ribo	В		
	-						13			4	Q9BX74	Q9BX74	TM2 dom	TI		
	c		· · · · · · · · · · · · · · · · · · ·				14			4	A6NCE7	A6NCE7	Microtub	M		
9							15			4	A6NCZ6	A6NCZ6	Siderofle	S		
							16			4	A6NDG6	A6NDG6	Phospho	P		
			88.0		8		17			4	014734;	014734;	Acyl-coe	A		
					_0		18			4	A6NDU8	A6NDU8	UPF060	С		
					-		19			4	A6NEM2	A6NEM2	Host cell	н		
				- 1	°°°		20			4	A6NFN2	A6NFN2	Abl inter	A		
9							21			4	Q13564;	Q13564;	NEDD8	Ν		
ē							22			4	A6NFX8	A6NFX8	ADP-sug	N		
							23			4	A6NG58	A6NG58	Beta-par	P.		
							24			4	A6NGJ0	A6NGJ0	Dynein li	D		
-							25			4	A6NGJ4	A6NGJ4	39S ribo	м		
l L				· · ·			26			1	A6NHL2	46NHI 2	Tubulin a	TI		
	-4	3 -2	-1 t-te	0 1 st Difference	2 3	4 5	3659 i	tems								
			1-16-													

For generation of the volcano plot, we now choose the t-test difference for the x- and the –log t-test p-value for the x-axis.

	Sessions_only 0 vs	SUN_2 - Perseus	1000 million (1000)		<u> </u>	-												
•	Matrix																	
1 🧐	Basic 🔹	Filter rows •	Annot. columns •	 Imputation • 	Clustering •	🛎 P ₂ 🕚	Visualization •	추 태종 🗠 📣	Basic •									
三日	Rearrange •	Filter columns 🔹	Annot. rows 🔹	Modifications •	fex 🗹 💶 Z 🍸	$\bar{x} p_{N}$	Clustering/PCA •	• 🖄 🛸 😃 7										
1	Normalization •	Quality •	Tests •	Proteomic ruler	• 📰 🍕 🗠 1D 2D	p1 🚺 👘	Misc. •	u 🖓 🔁 🖌										
Load			Processing	q			Anal	lysis	Multi-proc.	Export						г		
matrix1	matrix2 matrix4	matrix5 matri	ix6 matrix7 matr	rix8 matrix9 ma	atrix10 matrix11 n	atrix12	matrix13 matri	x14 matrix15	matrix16 matrix1	.7					4 1 1		Coloct	ما بر میزام
Data	Scatter plot	indias india					inden also inden	ALT MOUNTS	inden A20								Selecte	ed x-axis
i Data		·						Dat								- L		
- M ×	× ≈ ≈ • • • ₩	•••	6						Curves					$-\nu$				
								t-te	t Difference						J.			
1								-Log	t-test p-value					`				
								<n0< th=""><th>colors></th><th></th><th></th><th></th><th></th><th>'\`</th><th>• 🕑 🛛</th><th></th><th></th><th></th></n0<>	colors>					'\`	• 🕑 🛛			
9_									No labels 🕶 8	B Protein	IDs 🔹	Up to 🏸 🔹	5					
4								Poi	nts Categories	Correlatio	ns			4				
									60++									
4-									Symbol	Symbol	Symbol	Protein	Majority	Protein	G			
								1	cólor	tvine	size 4	A0AVT1	A0AVT1	names Ubiquitin	n: U	Ν.		
			5	_				2			4	A0FGR8	A0FGR8	Extende	E		сı.	
9								3			4	A1L OTO	A1L 0T0	Acetolac			Selecte	ed y-axis
e i				-				4			4	A1X283	A1X283	SH3 and	6	L		•
		-					Ν	5			4	P35611-	P35611-	Alpha-ad	Δ			
				8			h	8			4	09UBC2	0911802	Eniderm	Ē			
- ⁰			·	· · ·		1		7			4	42RRP1	42RRP1	Neurobla	N			
								/			4	A4D1E0	A4D1E0	GTP-bin	6			
alue								0			4	A401L3	A5011.3	Transme				
2.6								10			4			CCR4-N				
test								10			4			Duruwata				
00 t-								12			4	A6NC48	AGNC48	ADP-ribo				
7 0-					8			12			4	00874	000074	TM2 dom	т.			
	c.							13			4	A6NCE7	A6NCE7	Microtub	M			
								14			4	A6NC76	A6NC76	Sideroflo				
1.5								15			4	A6NDG6	A6NDG6	Phospho	P			
		L			8 "			10			4	014734	014734	Acyl-coe	A			
			6.6	6				10			4	46NDLI9	46NDU9	LIPE060				
			99 of 1					18			4	AGNEMO	AGNEMO	Host coll				
								19			4			Abl inter				
		L				•		20			4	A0INFIN2	A0INFIN2	NEDD9				
19				f a a a a a a a a a a a a a a a a a a a				21			4	Q 13504;	Q 13504;	ADD ave	N			
								22			4	ADINEX8	ADINEX8	ADP-sug				
			90 da					23			4	A6NG58	ABNG58	Beta-par	P.			
				a a a a a a a a a a a a a a a a a a a				24			4	ABNGJU	ABNGJ0	Dynein II				
								25			4	ABNGJ4	ABNGJ4	395 ribo	M			
	-4	3 2	-1		2		4	- 26				ARNHI 9	ARNHI 9					
		-3 -2	- ' t-te	ast Difference	2 3		- 0	365) items									

V I Session3_only U vs 3Uh_2 - Perseus	and here the second s
Matrix	
🕇 🥘 🛛 Basic 🔹 💦 Filter rows 🔹 Annot. columns 🔹 Imputation 🔹 Clustering 🔹 👺 🗛 🛛 Visualization 🛀	井 应 🔐 🛛 Basic + 🛛 🔚
📃 🚼 Rearrange 🐐 Filter columns 🔹 Annot. rows 🔹 Modifications 🔹 🚾 🖬 Z 🏹 🕱 PK Clustering/PCA 🔹	
🛞 Normalization * Quality * Tests * Proteomic ruler * 🧱 🖓 🗠 1D 2D Pi 🛕 Misc. *	
Load Processing Analysi	is Multi-proc. Export
matrixi matrix	4 matrix15 matrix16 matrix17
Data Scatter plot	
	Data Curves Select only the
	t-test Difference
	Log t-test p-value rest p-value
	<no colors=""></no>
о 10	No labels • 8 B Protein IDs • Up to '/ •
4 ⁻	Points Categories Categories Previously
	defined
4-	Symbol Symbol Protein Majority Protein G color type size IDs protein names p:
	1 4 A0AVT1 A0AVT1 Ubiquitin U Categories-
	2 4 A0FGR8 Extende E
ю	3 4 A1LOTO; A1LOTO Acetolac IL
	4 4 A1X283; A1X283 SH3 and S
	5 4 P35611 P35611 Alpha-ad A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 4 Q9UBC2 Q9UBC2 Epiderm E
	8 4 A4D1E9 A4D1E9 GIP-bin G
	17 4 014734: 014734: Acyl-coe A
	18 4 A6NDU8 A6NDU8 UPF060 C
	19 4 A6NEM2 Host cell H
	20 4 A6NFN2 A6NFN2 Abl inter A
	21 4 Q13564; Q13564; NEDD8 N
	22 4 A6NFX8 A6NFX8 ADP-sug N
	23 4 A6NG58 Beta-par P.
	24 4 A6NGJ0 A6NGJ0 Dynein Ii D
- · · · · · · · · · · · · · · · · · · ·	25 4 A6NGJ4 A6NGJ4 39S ribo M
-4 -3 -2 -1 0 1 2 3 4 5	3659 items
- Garbinerence	



	Session3_only U vs	30h_2 - Perseus								
-	Matrix									
* *	Basic •	Filter rows ▼	Annot, columns	<ul> <li>Imputation •</li> </ul>	Clustering • 🐻 💫	Visualization •	机 約 調 料	Basic •		
王国	Rearrange •	Filter columns •	Annot. rows •	Modifications •	tee 🗹 💶 Z 🝸 $\bar{\boldsymbol{\chi}}$ PN	Clustering/PC/	4 • 🖄 💊 ¥ 7			
-	Normalization •	Quality •	Tests •	Proteomic ruler •	📰 🎨 🗠 1D 2D 🖭 🛕	Misc. •	Ji 🖶 💟			
Load			Processin	q		Ar	nalysis	Multi-proc.	Export	
matrix1	matrix2 matrix4	matrix5 matri	ix6 matrix7 mat	rix8 matrix9 mat	ix10 matrix11 matrix12	matrix13 ma	trix14 matrix15	matrix16 matrix17		
Data	Scatter plot	1				1				
1 10	00	A					Dat	a Curves		
: 🖬 🔨	· ** ** ** * 14	• • • • •	- 6					Difference		
					We can		t-te	st Difference		<b>_</b>
							-Log	g t-test p-value		
			•		permane	ntlv	10</th <th>colors&gt;</th> <th></th> <th><b>_</b></th>	colors>		<b>_</b>
4.5						,		INO IADEIS * 8 B	Protein IUs • Up to ;' •	8
					cnange tr	ie	Pe	oints categories Co	prrelations	
			-		color of t	hic		C O 🌬 C 📒		
4-			_			115		Туре	Name	Size
		t			data noin	ts hv	1	t-test Sign	+	1069
		•					2	ratio ≻=1	Discard	3521
35			•		clicking h	ere.	3	ratio >=1	Кеер	138
			• • • •		<u> </u>		4	ratio <=-1	Discard	3478
			]				5	ratio <=-1	Кеер	181
<del>ო</del> –						(	6	t-test Sign	+_Discard	981
							Color	_	+_Keep	88
e		• •					Basic colors:		+_Discard	923
0-Val		. j			-				+_Keep	146
test										
90 t-	•									
7 0-										
					· · · · ·					
		° ° 8	- H							
5-	_		₽_ <mark>₽</mark> ₽		•		Custom colors:			
					• •					
							Define Cu	stom Colors >>		
		r.			· ·			Secol 1		
								ancei		
9°										
			-							
°-										
L		<u>.                                    </u>		<u> </u>						
	-4 -	-3 -2	-1 t-te	0 1 est Difference	2 3	4	5 9 ite	ms 2 selected		
							10			



210	Session3_only U vs 3Uh_2 - Perseus	and the second
-	Matrix	
1 1	Basic T Filter rows Annot, columns Imputation Clustering Wisualization	· 建翻 / Basic · _
TE EX	Rearrange • Filter columns • Annot. rows • Modifications • 🕼 🗹 💶 Z 🐨 🕱 Ph Clustering/PCA	A • 30 🗞 🕊 7 🖪 🖪
1	Normalization • Quality • Tests • Proteomic ruler • 🗮 🤯 🖾 10 20 Pr 🔺 Misc. •	
Load	Drocersing Ass	nalurir Multi-proc Export
Load	And	narysis multi-proc. Export
matrix1	I matrix2 matrix4 matrix5 matrix6 matrix7 matrix8 matrix9 matrix10 matrix11 matrix12 matrix13 matrix	atrix14 matrix15 matrix16 matrix17
Data	Scatter plot	
i 🗾 🕺	$\mathbb{R} \otimes \mathbb{Q} \leftrightarrow \mathbb{Q} \wedge \mathbb{Q} \wedge \mathbb{Q} \otimes \mathbb{R}$	Data Curves
		t-test Difference 🔻
		-Log t-test p-value
		<no colors=""></no>
		Selected * 8 B Gene names * IIn to '' *
4.5		Dointe Categories   Correlations
4-	PEPHX1	Type Name Size
	GNS a	1 t-test Sign + 1069
	SCARB2	2 ratio >=1 Discard 3521
85-		3 ratio >=1 Keep 138
		4 ratio <=-1 Discard 3478
	CTSA	5 ratio <=-1 Keep 181
<u>е</u> -		6 t-test Sign +_Discard 981
	F11R CD63 CTD12 GINS3 DHFR	7 t-test Sign +_Keep 88
æ		RRM2 8 t-test Sign +_Discard 923
alu 5		9 t-test Sign +_Keep 146
5 DF		
t-tes		
5		
1		
4		
÷-		
8-		
•-		
	-4 -3 -2 -1 0 1 2 3 4 5	5 9 items 2 selected
	riesi Dinerence	

210	Session3_only U vs 3Uh_2 - Perseus							
•	Matrix							
1	Basic  Filter rows	Annot. columns • Imputation •	Clustering 🔹 🦉 📴	Visualization • 📫 🏭	🔆 🚛 🛛 Basic	•		
E 🖸	Rearrange • Filter columns •	Annot. rows • Modifications •	100 🗹 💶 Z 🍸 🗴 Pr	Clustering/PCA + 🐰 👒	💐 🔽 🖪 E	3		
R.	Normalization • Quality •	Tests • Proteomic ruler	🔸 🧱 🏹 🗠 1D 2D 🎦 🛕	Misc. • 💦 🔒 🔂	*			
Load		Processing		Analysis	м	ulti-proc.	Export	
matrix1	L matrix2 matrix4 matrix5 matrix6	matrix7 matrix8 matrix9 m	atrix10 matrix11 matrix12	matrix13 matrix14 mat	rix15 matrix1	5 matrix17		< > C
Data	Scatter plot							
					Data Curv	res		
			can again		t-test Differe	nce		•=
		vve	can again		-log t-test p	-value		
		expo	rt the plot		<no colors=""></no>	volue		
					Selecte	d <b>-</b> 0 <b>B</b> (	Sono namor 🐨 Unito V 🐨	
4.5		to	various		Points Ca	tegories Co	relations	
						2 0		
	0	۹   °	nciure			💓 💊 📑	Marra	Cine
4-	EP		rmats			туре	Name	Size
	GN		initiatis.		1	t-test Sign	+	1069
	SCA	RB2			2	ratio >=1	Discard	3521
е Э		MRC2 ^D D	IP CYR61		3	ratio <= 1	Reep	138
	PPAP2B		PA4PSAT		4	ratio <=-1	Discard	3478
		SA 28209	ACYP1 AXL CDKASF1B		6	t toet Sign	+ Discard	001
<u></u> -	F11R Popper	KCTD12	BHLDA3		7	t-test Sign	+ Keen	901
	NPC2 SP			RRM2	8	t-test Sign	+ Discard	923
alue	Falan		TAGEMAD2L1	TYME	9	t-test Sign	+ Keep	146
4 P-V	HMOX1		NURF2	1100	-			
t-tes			RNBSEHZA BD19-, JBPL2219					
5								
· · ·			PBK					
			CTGF					
<u>بو</u>	CLCCODS ANAGE	C HORSCHUNT4						
-	LAMC1 PT							
			TK1					
		900 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -						
			ee e e					
9								
			1					
0-								
	-4 -3 -2	-1 0 1	2 3	4 5				
		t-test Difference			9 items 2 se	elected		

- Special case Spike-in SILAC
  - Sample proteins are measured against a heavy labeled reference sample (internal standard)



# So we again load up the **proteinGroups.txt** into Perseus. And select the 0h and Matr30h H/L ratios

Generic matrix upload					
File	D:\SILAC Workshop 2015\Zanivan et al 2013 (Mann paper)	\Origi	nal	results Mann\proteinGroups.txt	Select
	Razor + unique peptides Matr 30h_1 Razor + unique peptides Matr 30h_2 Razor + unique peptides Matr 30h_3 Razor + unique peptides Matr dil_1 Razor + unique peptides Matr dil_2 Razor + unique peptides Matr dil_3 Unique peptides BSA_1 Unique peptides BSA_2 Unique peptides BSA_3 Unique peptides BSA_3 Unique peptides FN_1 Unique peptides FN_2	A.	Ex	pression Ratio H/L normalized 0h_1 Ratio H/L normalized 0h_2 Ratio H/L normalized 0h_3 Ratio H/L normalized Matr 30h_1 Ratio H/L normalized Matr 30h_2 Ratio H/L normalized Matr 30h_3 Jumerical	t u d b
	Unique peptides FN_3 Unique peptides GFR_1 Unique peptides GFR_2 Unique peptides GFR_3 Unique peptides GFR_3 Unique peptides LAM_1 Unique peptides LAM_2 Unique peptides Matr 12h_1 Unique peptides Matr 12h_2 Unique peptides Matr 12h_3			PEP Intensity Intensity L Intensity H Int	t u d b
	Unique peptides Matr 24h_1 Unique peptides Matr 24h_2 Unique peptides Matr 24h_3 Unique peptides Matr dil_1 Unique peptides Matr dil_2 Unique peptides Matr dil_3 Sequence coverage [%] Unique + razor sequence coverage [%] Unique + razor sequence coverage [%]		Te	Reverse     Contaminant	d
	Mol. weight [kDa] Sequence length Slice average Slice 1 Slice 2 Slice 3 Slice 4		M	Majority protein IDs Protein names Gene names Proteins ulti-numerical	u d b
	Dife 5 Silee 5 Silee 7 Silee 8 Silee 9 Silee 10 Silee 11 Silee 12 Shorten expression column names	Ŧ		>	t u d b
					-
Cancel	Description				🛱 ок

So we again load up the **proteinGroups.txt** into Perseus. And select the 0h and Matr30h H/L ratios. Afterwards we filter the contaminats etc.

21019	Session1 - Pe	rseus																	
<b></b>	Matrix																		
1 1	Basic •	Filter	rows •	Annot, c	olumns • I	mputation •	Cluste	erina •	😅 þ ₂	Visualizati	on• 📫	885 1:0- 20	Basic •						
EN	Rearrange •	Filter	columns •	Annot. n	ows • 1	Modification	s + f(x) 📈	<b>Z</b> 7	$\overline{x}$ P _N	Clustering	/PCA • 🎊	S 😺 🔽							
-	Normalizatio	on • Qual	ity •	Tests •	F	Proteomic ru	ler • 📷 🍇	1D 2	) P1 🛦	Misc. •		c= 🖤							
Load				P	rocessing						Analysis		Mult	i-proc.	Export				
matrix1																		n : 🖬 🕪 🗶 🛔 🛧 🐄 📄	4 matrix1
Data																			Creator: hardt
			1.01.0					-											03/20/2015 16:15:34
	Un_1	Un_2	Un_3	Matr 30h_3	Matr 30h_2	Matr 30h_1	identifi	Reverse	Contam	PEP	intensity	L	H	IDs	protein	names	na	Generic matrix u	File: proteinGroups.txt
Type	Expros	Expres	Expres	Expres	Expres	Expres	Catego	Catego	Catego	Numeric	Numeric	Numeric	Numeric	Text	IDS Text	Text	То	matrix 1	Quality: (small values are good.)
1	1.0594	1 0290	1 220	1.9615	1 2004	1 5075	Catego	Catego	Catego	0	052060	600060	254000			Libiqui	110		Expression columns (6)
2	0.65211	0.00160	0.90044	0.62254	0.24262	0.45942				0	257600	177260	204000	ADEGP	ADEGP	Extend	ES		Categorical columns (3)
2	NaN	NaN	NoN	NoN	0.34203 NaN	0.43043 NoN				2 1000	670070	506090	7209500			Modiat	ME		<ul> <li>String columns (5)</li> <li>Numerical columns (4)</li> </ul>
	0.91575	NaN	NaN	1 2/05	NaN	1.614				8 1766	119360	977740	215880	A0.INI//5	A0.INI//5	LIHRE1	LIF		Multi-numerical columns (0)
5	NaN	NaN	NaN	NaN	NaN	NaN	+			1 7907	270370	215370	550060	FORHO	FORHO	Placks	PI		Categorical rows (0)
6	NaN	NaN	NaN	NaN	NaN	NaN				9.5202	51/250	435080	791680	A0M76	A0M76	Shooti	KU		Numerical rows (0)
7	NaN	NaN	0.72598	0.53048	NaN	NaN				4.8278	492420	386300	106120	AOP IW	AOP IW6	Transm	TN		
8	NaN	NaN	NaN	NaN	NaN	NaN				1.8473	583650	380530	203110	01565	01565	Probab	.IN		
9	NaN	NaN	NaN	NaN	NaN	NaN				4 2013	8772200	8038000	734270	A0T4C	A0T4C	Sobing	SE		
10	1 4123	NaN	0.24564	0.33469	NaN	NaN				3 3301	403140	285770	117380	A1A4S	A1A4S	Rho G	AF		
11	NaN	NaN	NaN	NaN	NaN	NaN	+			0.0001	124580	999490	246320	A1K79	A1K79	Peroxi	PX		
12	NaN	NaN	NaN	NaN	NaN	NaN				2 5025	330490	296430	3406000	A11 020	A1L 020	RNA-b	ME		
13	0.96951	0 88448	0.7311	0.62026	0 71102	0.63919				0	327420	267380	600400	A1L 0T	A1L 0T0	Acetola			
14	NaN	NaN	NaN	NaN	NaN	NaN				2.4735	975370	751600	223770	A1L188	A1L188	Uncha	C1		
15	0.37244	0.33659	0.48345	0.79147	0.53515	0.68094				0	179760	153430	263300	A1X28	A1X283	SH3 an	SF		
16	0.80004	0.69103	0.29032	0.23002	NaN	0.42627				1.8734	241310	204190	371160	Q86X1	Q86X1	Ral GT	RA		
17	NaN	NaN	1.0751	0.60163	NaN	0.4166				2.1456	772010	592580	179420	A2A2G	A2A2G	Dolichy	AL		
18	0.45	0.51119	0.45442	0.60315	NaN	0.54194				0	261260	224830	364340	A2A2Q	A2A2Q	Uncha	C2		
19	NaN	0.65642	NaN	NaN	NaN	NaN				3.9044	309930	244260	656670	P4269	P4269	RNA-b	RE		
20	NaN	NaN	NaN	0.44869	NaN	1.4939				1.6859	294430	201560	928690	Q1467	Q1467	KN mo	KA		
21	NaN	NaN	NaN	NaN	NaN	NaN				1.5469	0	0	0	A2A3N	A2A3N6	Putativ	PIF		
22	0.52754	0.61874	0.85262	0.64743	0.55281	0.57093				0	132740	110890	218430	P3561	P3561	Alpha	AE		
23	1.2881	1.8743	0.4154	0.27077	NaN	NaN				4.4591	870720	690160	180560	P2806	P2806	Protea	PS		
24	NaN	NaN	NaN	NaN	NaN	NaN				3.976E	123110	7939000	4372300	O0032	O0032	Aryl hy	AF		
25	NaN	NaN	NaN	NaN	NaN	NaN	+			1.6228	0	0	0	A2NHM	A2NHM	Caspase	mi		
26	1.0326	0.93957	1.1549	1.0643	0.91959	0.70719				0	108150	807580	273950	Q9UBC	Q9UBC	Epider	EF		< >
27	NaN	NaN	NaN	NaN	NaN	NaN	+			0.0001	161420	874090	740140	Q9GZY	Q9GZY	Nuclea	N		
28	0.47103	0.40068	1.4856	0.8136	0.32179	0.2699				0	126030	967480	292790	A2RRP	A2RRP	Neurob	NE		
29	NaN	0.69165	0.80278	NaN	1.0023	NaN				1.271E	709720	553200	156520	A2RUC	A2RUC4	tRNA w	TY		
30	NaN	NaN	NaN	NaN	NaN	NaN				9.8889	781840	667720	114120	A2VDF	A2VDF	Fucose	C1		
31	NaN	NaN	NaN	NaN	NaN	NaN	+			0.0050	0	0	0	A3KFI1	A3KFI1		NE		
					-														
7681 items	;																	<u> </u>	
																			Version 1.5.1.6

Next we again linearize the SILAC ratios by transforming them to their log2-values.

	Mat	rix				
	Basic	Filter rows      Anno	ot. co	olumns • I	mputation •	
	f(x)	Transform 🙀	t. ro	ows ▼ _ !	Modification	s •
	۵	Co Transform	-		)ti-ru	ler '
	Z	Co f(x) All values in the specified transformed according to	l col o the	umns are formula s	pecified.	
_		Summany statistics (columns)			1	
		Summary statistics (courtins)	e	Score	Intensity	L
			ric	Numeric	Numeric	N
-		Quantiles 😭	Г	4.0745	188920	98
	-	Density estimation 🙀	ł	1.4653	183450	12
		Performance curves 🤮		6.6682	931260	66
		Combine rows by identifiers		14.438	968950	49
		Clone 🛱	ł	1.9054	960480	83
	<b>~</b> ~/		3	1.1743	1918800	11
		Significance A 🥵	L	5.6441	1161600	11
		Significance B 🥵	5	0.99659	254400	25
		Add noise 😗		1.1381	128280	12
	-		1	4.9443	374210	30



As before we do a multi scatter plot to assess the reproducibility of the samples.





Multi scatter plot			
Rows Columns	0h_1 0h_2 0h_3 Matr 30h_3 Matr 30h_2 Matr 30h_1 PEP Intensity Intensity L Intensity L Intensity H 0h_1 0h_2 0h_3 Matr 30h_3 Matr 30h_3 Matr 30h_1 PEP Intensity Intensity L Intensity L Intensity L		t u d b t u d b
Cancel		Description	🙀 ок

As expected the results of the Pearson correlation analysis show a higher correlation between equally-treated then unequally-treated cells.



In addition to get an idea of the SILAC ratio distributions and see if they are normally distributed, we create a histogram.







Since we selected the SILAC ratios already normalized by MaxQuant during its search, we can see that they almost completely cluster around 0.

2 ' 🗆	Session2_only 0 vs Son_02 - Perseus	-	-		-	
•	Matrix					
1 🐐	Basic • Filter rows •	Annot. columns • Imputation •	Clustering • 🦉 🗛	Visualization • 🕂 🏭 🔛	🔐 Basic 🔹	
三 🕄	Rearrange • Filter columns •	Annot. rows   Modifications	📧 🗹 🎫 Z 🝸 $\bar{\chi}$ PN	Clustering/PCA 🔹 🎊 🚳 😃		
18 18	Normalization • Quality •	Tests • Proteomic ruler •	📑 🍕 🗠 1D 2D 🎦 🛕	Misc. • 🍡 🛃 🖼 🖤		
Load		Processing		Analysis	Multi-proc.	Export
matrix1	matrix2 matrix3 matrix4 matrix5	matrix6 matrix7 matrix8				< ▶ □
Data	Histogram					< > C
🗄 🙊 ln	cols 🖂 🔝 🛃 🏗 📕			Points Categories		< > 🖬
				🗄 🤣 🥑 📕 🔤 Selection fron	n table 🔹	
Ints	완	<b>.</b>		Fill color Borde	er Protein Majorit	/ Protein
C				1	A0AVT1 A0AVT	1 Ubiqui
	iiiiii.			2	A0FGR8 A0FGR	8 Extend
	5 0 5	-5 0 5	-	3	A0JLT2; A0JLT2	; Mediat
	log2 0h_1	log2 Matr 30h_1		4	A0JNW5 A0JNW	5 UHRF1
				5	A0MZ66 A0MZ6	6 Shootii
uts.	e e	I I.		6	A0PJW6 A0PJW	6 Transn
Cou	5			7	Q15652; Q15652	2; Probat
				8	A0T4C8 A0T4C	B Sphing
4		L <u>IIIII</u>		9	A1A4S6 A1A4S	6 Rho G1
-	log2 0h_2	-5 0 5 log2 Matr 30h_2	~	10	A1L020 A1L020	RNA-b
				11	A1L0T0; A1L0T0	) Acetola
<u>t</u> s		- <u></u>		12	A1L188 A1L188	3 Uncha
Sour	jun jung			13	A1X283; A1X283	3 SH3 ar
				14	Q86X10 Q86X1	D Ral GT
4		L	_	15	A2A2G4 A2A2G	4 Dolich
-	5 0 5 log2.0h.3	-5 0 5 log2 Matr 30h 3		16	A2A2Q9 A2A2Q	9 Uncha
	loge on_o	log2 maa oon_o		17	P42696; P42696	; RNA-b
				18	Q14678: Q1467	3: KN mo

But we can still see a little shift to the left in almost all samples, so we again normalize the data.

<mark>2</mark> ' 🗆	Session2_only 0 vs 30n_02 - Perseus		-			
•	Matrix					
1 🧐	Basic • Filter rows • A	nnot. columns • Imputation •	Clustering • 🦉 🗛 🖓	Visualization 🔹 🕂 🏭 🖂 🚛	Basic 🔹	
三 🕄	Rearrange • Filter columns • A	nnot. rows • Modifications •	100 🗹 🎫 Z 🝸 $\bar{\chi}$ PN	Clustering/PCA 🔹 🎊 😒 😃 7		
18 18	Normalization • Quality • T	ests • Proteomic ruler •	📑 苓 🗠 1D 2D 🎦 🛕	Misc. 🔹 🛛 📑 🖼 👹		
Load		Processing		Analysis	Multi-proc.	Export
matrix1	matrix2 matrix3 matrix4 matrix5	matrix6 matrix7 matrix8				< ▶ □
Data	Histogram					< > C
🗄 🙊 ln	cols 🖂 🔝 💽 🏗 🛒			Points Categories		< Þ 🖬
				Selection from tak	ole 🔹	
Ints	ti t	<u>d.</u>		Fill color Border	Protein Majority	Protein
õ	. Š			1	A0AVT1 A0AVT1.	Ubiqui
				2	A0FGR8 A0FGR8.	Extend
		-5 0 5	- 1	3	A0JLT2; A0JLT2;.	Mediat
	log2 0h_1	log2 Matr 30h_1		4	A0JNW5 A0JNW5	UHRF1
				5	A0MZ66 A0MZ66.	Shootii
st	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	L .		6	A0PJW6 A0PJW6	Transn
Cou				7	Q15652; Q15652;	Probat
_				8	A0T4C8 A0T4C8.	Sphing
4		L		9	A1A4S6 A1A4S6.	Rho G1
-	log2 0h_2	-5 0 5 log2 Matr 30h_2	~	10	A1L020 A1L020	RNA-b
	d.			11	A1L0T0; A1L0T0	Acetola
알		L		12	A1L188 A1L188	Uncha
Sour	, in the second s			13	A1X283; A1X283	SH3 ar
о 				14	Q86X10 Q86X10.	Ral GT
L		L	_	15	A2A2G4 A2A2G4.	Dolich
-	5 0 5 log2.0h.3	-5 0 5 log2 Matr 30h 3		16	A2A2Q9 A2A2Q9.	Uncha
	1092 01_0	logz maa oon_o		17	P42696; P42696;	RNA-b
				18	Q14678: Q14678:	KN mo

Since we have log2-transformed values we normalize each column by subtracting its median.





Subtract	And others, Support of States,	
Matrix access	Columns	
Subtract what	Median	
Cancel	Description - Output	🛱 ок

After the normalization we again create a histogram.

#### before



#### after



Now we can see that the ratios of all experiments are nicely centered around 0.



#### before

#### Matrix Basic • Filter rows • Annot, columns * Imputation • Clustering f(x) Z Rearrange • Filter columns 🔹 Annot, rows • Modifications ¹ $\square \bigcirc \bigcirc \bigcirc$ 10 Normalization • Quality • Tests • Proteomic ruler • matrix4 matrix5 matrix6 matrix7 matrix8 matrix9 matrix2 matrix3 matrix1 Histogram Data 🛪 la cols 🖂 🖬 📰 📆 🚬 Counts Counts -5 -5 5 ò log2 0h 1 log2 Matr 30h 1 Counts Counts -5 5 -5 b log2 Matr 30h_2 Ó log2 0h_2 Counts Counts -5 -5 ò 5 ò log2 0h_3 log2 Matr 30h_3

#### after

Now we define groups for the differentially treated samples.





Categorical annotation rows	1. Scillar	The second		family 1	·····	
Action	Create					*
	Row name	Group1				
	0h_1	0h_1				
	0h_2	0h_2				
	0h_3	0h_3				
	Matr 30h_3	Matr 30h_3				
	Matr 30h_2	Matr 30h_2				
	Matr 30h_1	Matr 30h_1				
Cancel		Descriptio	on - Output			ОК

At the next step we define groups for the differentially treated samples.

ction	Create	
	Row name	Group1
	0h_1	0h
	0h_2	0h
	0h_3	Oh
	Matr 30h_3	Matr 30h
	Matr 30h_2	Matr 30h
	Matr 30h_1	Matr 30h

This defines the name of the grouping (Here "Group1"). For more complex analyses one could define different groupings within the same Perseus project.

Now you assemble different expression values into groups by giving them the same groupname. In this example the groups are named 0h and Matr30h.

We have a lot of identifications without or only a limited amount of quantitative values (NaN). Since we want to have very reliable quantitative data, we now remove all entries which have insufficient entries.

	0h_1	0h_2	0h_3	Matr 30h_3	Matr 30h_2	Matr 30h_1	PEP	Intensity	Intensity L	Intensity H	Protein IDs	Majority protein IDs	Protein names	Gene names	Proteins
Туре	Expres	Expres	Expres	Expres	Expres	Expres	Numeric	Numeric	Numeric	Numeric	Text	Text	Text	Text	Text
Group1	0h	0h	0h	Matr 3	Matr 3	Matr 3									
1	0.32336	0.3477	0.6876	1.17719	0.5443	1.06594	0	953960	699960	254000	A0AVT	A0AVT	Ubiqui	UBA6	6
2	-0.375	-0.026	0.0991	-0.400	-1.27522	-0.735	0	257690	177260	804350	A0FGR	A0FGR	Extend	ESYT2	5
3	NaN	NaN	NaN	NaN	NaN	NaN	3.4808	670070	596980	7308500	A0JLT	A0JLT	Mediat	MED19	2
4	0.1145	NaN	NaN	0.6020	NaN	1.08076	8.1766	119360	977740	215880	A0JNW5	A0JNW5	UHRF1	UHRF1	1
5	NaN	NaN	NaN	NaN	NaN	NaN	9.5202	514250	435080	791680	A0MZ6	A0MZ6	Shooti	KIAA1	8
6	NaN	NaN	-0.195	-0.633	NaN	NaN	4.8278	492420	386300	106120	A0PJW	A0PJW6	Transm	TMEM	3
7	NaN	NaN	NaN	NaN	NaN	NaN	1.8473	583650	380530	203110	Q1565	Q1565	Probab	JMJD1C	3
8	NaN	NaN	NaN	NaN	NaN	NaN	4.2013	8772200	8038000	734270	A0T4C	A0T4C	Sphing	SPHK2	6
9	0.7395	NaN	-1.75884	-1.29838	NaN	NaN	3.3301	403140	285770	117380	A1A4S	A1A4S	Rho G	ARHG	3
10	NaN	NaN	NaN	NaN	NaN	NaN	2.5025	330490	296430	3406000	A1L020	A1L020	RNA-b	MEX3A	1
11	0.1968	0.1155	-0.185	-0.408	-0.221	-0.255	0	327420	267380	600400	A1L0T	A1L0T0	Acetola	ILVBL	5
12	NaN	NaN	NaN	NaN	NaN	NaN	2.4735	975370	751600	223770	A1L188	A1L188	Uncha	C17orf	1
13	-1.18344	-1.27829	-0.78202	-0.056	-0.631	-0.164	0	179760	153430	263300	A1X28	A1X283	SH3 an	SH3PX	9
14	-0.080	-0.240	-1.51774	-1.83945	NaN	-0.840	1.8734	241310	204190	371160	Q86X1	Q86X1	Ral GT	RALGA	7
15	NaN	NaN	0.3710	-0.452	NaN	-0.873	2.1456	772010	592580	179420	A2A2G	A2A2G	Dolichy	ALG6	2
16	-0.910	-0.675	-0.87136	-0.448	NaN	-0.493	0	261260	224830	364340	A2A2Q	A2A2Q	Uncha	C20orf4	2
17	NaN	-0.314	NaN	NaN	NaN	NaN	3.9044	309930	244260	656670	P4269	P4269	RNA-b	RBM34	5
18	NaN	NaN	NaN	-0.875	NaN	0.9692	1.6859	294430	201560	928690	Q1467	Q1467	KN mo	KANK1	6
19	NaN	NaN	NaN	NaN	NaN	NaN	1.5469	0	0	0	A2A3N	A2A3N6	Putativ	PIPSL	2
20	-0.681	-0.399	0.0365	-0.346	-0.585	-0.418	0	132740	110890	218430	P3561	P3561	Alpha	ADD1	14
21	0.60672	1.19899	-1.00089	-1.60414	NaN	NaN	4.4591	870720	690160	180560	P2806	P2806	Protea	PSMB9	6
22	NaN	NaN	NaN	NaN	NaN	NaN	3.976E	123110	7939000	4372300	O0032	O0032	Aryl hy	ARNTL	11
23	0.2877	0.2027	0.4743	0.3706	0.1491	-0.109	0	108150	807580	273950	Q9UBC	Q9UBC	Epider	EPS15	3
24	-0.844	-1.02683	0.8375	-0.016	-1.36575	-1.49938	0	126030	967480	292790	A2RRP	A2RRP	Neurob	NBAS	4
25	NaN	-0.239	-0.050	NaN	0.2733	NaN	1.271E	709720	553200	156520	A2RUC	A2RUC4	tRNA w	TYW5	2
26	NaN	NaN	NaN	NaN	NaN	NaN	9.8889	781840	667720	114120	A2VDF	A2VDF	Fucose	C10orf	2
27	0.0058	-0.564	NaN	NaN	NaN	NaN	6.8177	893840	669650	224180	A3KMH	A3KMH	Uncha	KIAA0	6
28	NaN	NaN	1.32873	NaN	NaN	NaN	2.0788	262730	166530	962020	E9PCH	E9PCH	Rap gu	FNIP1	9
29	-0.399	-1.57006	-0.904	-1.32439	NaN	-0.70792	0	201990	167490	344940	A3KN8	A3KN8	Protein	SBNO1	5
30	-0.723	-0.725	-0.245	-0.587	-0.455	-0.206	2.2871	227520	188520	390020	A4D1E	A4D1E	GTP-b	GTPBP	8

We now remove all entries which have insufficient entries. For this we want to have at least **3 valid values** in **one of the previously defined groups** (0 or 30h).

M	latrix		
la	sic • Filte	Filter rows 🔹 Annot. columns 🔹 Imputation 🔹 Clustering 🔹 🦉 P2 Visualization 🔹	
R.e	earrange 🔹 😽 😽	Filter rows based on categorical column 🚌 💶 Z 🏹 $ar{\chi}$ P _N Clustering/PCA	
Ne	ormalization •	Filter rows based on numerical/expression column	
		Filter rows based on text column	
m	atrix2 matrix3	Eiter rows based on valid values	
	log2 H/L log2	Filter rows based on random sampl Filter rows based on valid values p	
		Rows/columns of the expression matrix are	
	Expres Expres	es Expres Numeric Numeric intered to contain a reactine specified numbers in of entries that are value in the specified way.	
Processing			
Filter rows based on valid values			
Min. number of values	3		A
Mode	In at least one gro	e group	
	Grouping	Group1 💆	
Values should be	Valid		
Filter mode	Reduce matrix	v	<b>_</b>
	Incource matrix	<b>,</b>	
Concel		Description Output	
Cancer		Description - Output	

The stringent filtering for valid values reduced the number of protein groups from 6767 to 4359

Data

	log2 0h_1	log2 0h_2	log2 0h_3	log2 Matr 30h_1	log2 Matr 30h_2	log2 Matr 30h_3	PEP	Intensity	Intensity L	Intensity H
Туре	Expres	Expres	Expres.	Expres	Expres	Expres	Numeric	Numeric	Numeric	Numeric
Group1	0h	0h	0h	Matr 3	Matr 3	Matr 3				
1	0.32336	0.3477	0.6876	1.06594	0.5443	1.17719	0	953960	699960	254000
2	-0.375	-0.026	0.0991	-0.735	-1.27522	-0.400	0	257690	177260	804350
3	NaN	NaN	NaN	NaN	NaN	NaN	3.4808	670070	596980	7308500
4	0.1145	NaN	NaN	1.08076	NaN	0.6020	8.1766	119360	977740	215880
5	NaN	NaN	NaN	NaN	NaN	NaN	9.5202	514250	435080	791680
6	NaN	NaN	-0.195	NaN	NaN	-0.633	4.8278	492420	386300	106120
7	NaN	NaN	NaN	NaN	NaN	NaN	1.8473	583650	380530	203110
8	NaN	NaN	NaN	NaN	NaN	NaN	4.2013	8772200	8038000	734270
9	0.7395	NaN	-1.75884	NaN	NaN	-1.29838	3.3301	403140	285770	117380
10	NaN	NaN	NaN	NaN	NaN	NaN	2.5025	330490	296430	3406000
11	0.1968	0.1155	-0.185	-0.255	-0.221	-0.408	0	327420	267380	600400
12	NaN	NaN	NaN	NaN	NaN	NaN	2.4735	975370	751600	223770
13	-1.18344	-1.27829	-0.78202	-0.164	-0.631	-0.056	0	179760	153430	263300
14	-0.080	-0.240	-1.51774	-0.840	NaN	-1.83945	1.8734	241310	204190	371160
15	NaN	NaN	0.3710	-0.873	NaN	-0.452	2.1456	772010	592580	179420
16	-0.910	-0.675	-0.87136	-0.493	NaN	-0.448	0	261260	224830	364340
17	NaN	-0.314	NaN	NaN	NaN	NaN	3.9044	309930	244260	656670
18	NaN	NaN	NaN	0.9692	NaN	-0.875	1.6859	294430	201560	928690
19	NaN	NaN	NaN	NaN	NaN	NaN	1.5469	0	0	0
20	-0.681	-0.399	0.0365	-0.418	-0.585	-0.346	0	132740	110890	218430
21	0.60672	1.19899	-1.00089	NaN	NaN	-1.60414	4.4591	870720	690160	180560
22	NaN	NaN	NaN	NaN	NaN	NaN	3.976E	123110	7939000	4372300
23	0.2877	0.2027	0.4743	-0.109	0.1491	0.3706	0	108150	807580	273950
24	-0.844	-1.02683	0.8375	-1.49938	-1.36575	-0.016	0	126030	967480	292790
25	NaN	-0.239	-0.050	NaN	0.2733	NaN	1.271E	709720	553200	156520
26	NaN	NaN	NaN	NaN	NaN	NaN	9.8889	781840	667720	114120
27	0.0058	-0.564	NaN	NaN	NaN	NaN	6.8177	893840	669650	224180
28	NaN	NaN	1.32873	NaN	NaN	NaN	2.0788	262730	166530	962020
29	-0.399	-1.57006	-0.904	-0.70792	NaN	-1.32439	0	201990	167490	344940
30	-0.723	-0.725	-0.245	-0.206	-0.455	-0.587	2.2871	227520	188520	390020
31	NaN	NaN	NaN	NaN	NaN	0.1196	1.1909	115210	652660	499420
	-									

	log2 0h_1	log2 0h_2	log2 0h_3	log2 Matr 30h_1	log2 Matr 30h_2	log2 Matr 30h_3	PEP	Intensity	Intensity L	Intensity H
Туре	Expres	Expres	Expres	Expres	Expres	Expres	Numeric	Numeric	Numeric	Numeric
Group1	0h	0h	0h	Matr 3	Matr 3	Matr 3				
1	0.32336	0.3477	0.6876	1.06594	0.5443	1.17719	0	953960	699960	254000.
2	-0.375	-0.026	0.0991	-0.735	-1.27522	-0.400	0	257690	177260	804350.
3	0.1968	0.1155	-0.185	-0.255	-0.221	-0.408	0	327420	267380	600400
4	-1.18344	-1.27829	-0.78202	-0.164	-0.631	-0.056	0	179760	153430	263300.
5	-0.080	-0.240	-1.51774	-0.840	NaN	-1.83945	1.8734	241310	204190	371160.
6	-0.910	-0.675	-0.87136	-0.493	NaN	-0.448	0	261260	224830	364340.
7	-0.681	-0.399	0.0365	-0.418	-0.585	-0.346	0	132740	110890	218430.
8	0.60672	1.19899	-1.00089	NaN	NaN	-1.60414	4.4591	870720	690160	180560.
9	0.2877	0.2027	0.4743	-0.109	0.1491	0.3706	0	108150	807580	273950.
10	-0.844	-1.02683	0.8375	-1.49938	-1.36575	-0.016	0	126030	967480	292790.
11	-0.399	-1.57006	-0.904	-0.70792	NaN	-1.32439	0	201990	167490	344940.
12	-0.723	-0.725	-0.245	-0.206	-0.455	-0.587	2.2871	227520	188520	390020.
13	0.3501	-0.865	-0.109	-1.8438	-1.61485	-0.437	2.4205	355890	276620	792720.
14	-1.20719	-0.854	-0.656	-0.828	-0.787	0.2125	0	133150	112270	208800.
15	0.2143	0.2469	0.4567	-0.364	-0.196	-0.377	0	675290	524240	151050.
16	2.68195	2.41475	2.30399	0.8390	-0.034	0.7615	4.4294	805000	452920	352080.
17	0.4557	0.8764	0.4047	-0.977	0.0987	-0.039	1.4495	565120	445340	119770.
18	0.5064	0.4190	0.4412	0.6725	0.9680	1.89891	1.0956	164890	119330	455590.
19	-2.96915	NaN	NaN	-3.12236	-0.314	-1.49643	1.5317	211370	205850	551780.
20	0.3683	0.3571	0.2419	-0.421	-0.365	-0.522	0	469440	380810	886330.
21	-0.205	0.8501	0.3680	0.5234	0.8909	0.6429	0	129930	959180	340170.
22	0.3143	0.5076	0.8039	-0.039	-0.114	0.3077	0	546080	504820	412560.
23	-0.028	0.3584	-0.391	0.9518	0.5596	-1.0429	3.7088	223750	180350	433970.
24	-0.310	1.92937	-1.66071	NaN	-0.799	-0.682	0	507190	382910	124280.
25	-0.68224	-0.697	-0.154	-0.931	-0.798	-0.271	0	275230	223270	519630.
26	-1.42707	-0.956	-1.35557	-0.867	-0.889	-1.05706	8.4587	506980	445760	612280
27	1.0485	-0.13375	-0.475	0.2005	0.1954	-0.124	0	295790	244110	516780.
28	-1.0615	-0.946	-0.691	-0.764	NaN	-0.947	5.6448	349570	298650	509160
29	0.3533	0.3760	0.3452	0.8798	0.7579	1.27044	0	500840	352390	148460.
30	-0.638	-0.564	-0.447	-0.293	-0.326	-0.170	0	877260	727830	149430.
31	NaN	-1.61428	-1.3874	-2.35427	-1.76777	-1.12286	0	204100	181720	223870.

To identify protein groups significantly different between experimental conditions we perform a t-test and create a Volcano plot.

Visualization • + Clustering/PCA • & Misc. •	ŧ III i⊵ " ≪ ∾ ¥ 0 ∎ c= ¥	Basi	ic •			
Analysis	;	1	Multi-proc.	Export		
	Volc	ano plot				
Intensity Protein H IDs	Ma prc ID:		Visualize th form of a ve significant of permutatio	e results of olcano plot. data points n-based FD	a t-test in the Determine with a R calculation.	
Numeric Text	Тел	TEAL	TEAL	TEAL	-	
	1000	1		-		

Volcano plot			x	1
Grouping	Group1		•	
	First group	Oh		
	Second group	Matr 30h		
Test	t-test		•	Two-sided
Side	Both		-	t-test with
Number of randomizations	250			error
Preserve grouping in randomizations	<none></none>		-	
FDR	0.05			corrected p-
SO	0			values (0.05
			Ļ	FDR)
Cancel	[	Description 🙀	ОК	