Ruprecht-Karls-Universitšt Heidelberg





Spokesperson:
Prof. Bernd Bukau

ZMBH, Im Neuenheimer Feld 282
69120 Heidelberg, Germany
Tel.: + 49-6221 54 6795
Fax.: +49-6221 54 5894
bukau@zmbh.uni-heidelberg.de


SFB 1036 managing office /
SFB 1036 - Geschäftsstelle

Veronika Helm
ZMBH, Im Neuenheimer Feld 282
69120 Heidelberg, Germany
Tel.: + 49-6221 54 8102
email: v.helm@zmbh.uni-heidelberg.de



Welcome to the SFB 1036


CELLULAR SURVEILLANCE AND DAMAGE RESPONSE





As a consequence of the intrinsic biochemical fragility of molecules and limited robustness and precision of cellular processes, cells must routinely deal with faulty or damaged molecules and perturbations of cell physiology. Damage and erroneous processes may be tolerable or even result in some advantage eventually contributing to evolutionary diversification, but may otherwise have catastrophic consequences. Some types of damage can become encoded in the genome, and manifest as inherited or acquired diseases. Others may perturb cellular homeostasis and result in malfunction, degeneration and ageing of cells and organisms. Damage and errors are aggravated by a multitude of internal and environmental insults (stresses). Consequently, all cells, from bacteria to human, have developed a powerful network of systems, acting at multiple levels on macromolecules, cellular compartments, whole cells and entire organs, to minimize and reverse the damage that would ensue if mistakes and abnormal molecules went by unmonitored and uncorrected. The medical dimension of surveillance and damage response pathways becomes apparent when these pathways lose effective function, since this usually results in disease.

The long-term goal of this Collaborative Research Center (Sonderforschungsbereich, SFB) entitled "Cellular surveillance and damage control" is to elucidate the molecular mechanisms driving and coordinating damage control systems. In 17 research projects (TP) and 2 service projects (Z) the question of how the quality of gene function is monitored and how damage signals are integrated to elicit appropriate responses will be analyzed. This should provide a comprehensive understanding of how cells react to damage and establish and maintain homeostasis. Towards this goal the SFB will investigate:

Safeguarding systems that avert potential errors and damage by ensuring proper performance of cellular processes such as DNA replication, translation, and those underpinning homeostatic environments (e.g. iron homeostasis or redox state).

Damage repair systems which detect damaged or abnormal macromolecules (DNA, RNA, proteins) and provide repair and/or regulated elimination.

Stress response pathways that increase cellular capacity to cope with specific or global stress (e.g. heat shock, oxidative stress, protein overload in the endoplasmic reticulum). With the planned research on surveillance mechanisms and damage responses we are aiming at providing a comprehensive understanding of how cells react to damage and establish and maintain homeostasis.



News & Seminars

November 8, 2017
1.00 p.m.


Daniel J.Gibbs (Plant proteolysis and signalling laboratory School of Biosciences University of Birmingham, Birmingham, UK)
From start to finish: Emerging functions for the N-end rule pathway in plants
ZMBH seminar room 001 | INF 282 (pdf)

Dr. Voisine (left) explains a method to a PhD student
in Carmen Nussbaum-Krammers lab.
Students having lunch with Jeff Brodsky, a seminar speaker
from the University of Pittsburgh.



Photographs of Events

photos from the kick-off meeting 2013 photos from the PhD and PostDoc retreat 2013
photos from the SFB 1036 retreat at Flehingen Castle, 2014 Impressions of the SFB Congress in November 2014
group photo of the SFB members at retreat in Bad Wimpfen, 2015 End of year party 2015 & inauguration seminars by
Claudio Joazeiro and H. Kaessmann
Kick-off meeting 2016



Recent publications

Döring, K., Ahmed, N., Riemer, T., Suresh, H.G., Vainshtein, Y., Habich, M., Riemer, J., Mayer, M.P., O'Brien, E.P., Kramer, G., Bukau, B. (2017). Profiling Ssb-nascent chain interactions reveals principles of Hsp70-assisted folding. Cell 170:298-311.e20. doi: 10.1016/j.cell.2017.06.038. (Abstract).

Book Series "Progress in Molecular and Subcellular Biology", Book title: "Centromeres and Kinetochores", Editor: Ben Black, Chapter 7: "Post-translational modifications of centromeric chromatin" (2017) by Ana García del Arco & Sylvia Erhardt (see more).

Nötzold, L., Frank, L., Gandhi, M., Polycarpou-Schwarz, M., Groß, M., Gunkel, M., Beil, N., Erfle, H., Harder, N., Rohr, K., Trendel, J., Krijgsveld, J., Longerich, T., Schirmacher, P., Boutros, M., Erhardt, S., Diederichs, S. (2017). The long non-coding RNA LINC00152 is essential for cell cycle progression through mitosis in HeLa cells. Sci Rep. 7:2265. doi: 10.1038/s41598-017-02357-0 (Abstract).

Shostak, A., Ruppert, B., Diernfellner, A., Brunner, M. (2017). Correspondence: Reply to 'Oncogenic MYC persistently upregulates the molecular clock component REV-ERBα'. Nat Commun. 8:14918. doi: 10.1038/ncomms14918 (Abstract).

Weyer, F.A., Gumiero, A., Lapouge, K., Bange, G., Kopp, J., Sinning, I. (2017) Structural basis of HypK regulating N-terminal acetylation by the NatA complex. Nat. Comm. 8:15726. doi: 10.1038/ncomms15726 (Abstract).

Meurer, M., Chevyreva, V., Cerulus, B., Knop, M. (2017). The regulatable MAL32 promoter in Saccharomyces cerevisiae: characteristics and tools to facilitate its use. Yeast 34:39-49. doi: 10.1002/yea.3214. PMID: 27714848. (Abstract).

Daturpalli, S., Knieß, R. A., Lee, C.-T., Mayer, M. P. (2017). Large rotation of the N-terminal domain of Hsp90 is important for interaction with some but not all client proteins. J. Mol. Biol. 429:1406-1423. doi:10.1016/j.jmb.2017.03.025 (Abstract).

Nguyen, M.T.N., Knieß, R.A., Daturpalli, S., Le Breton, L., Ke, X., Chen, X., Mayer, M.P. (2017). Isoform-specific phosphorylation in human Hsp90ß affects interaction with clients and the cochaperone Cdc37. J. Mol. Biol. 429:732-752. doi: 10.1016/j.jmb.2017.01.011 (Abstract).

Mogk, A., Bukau, B. (2017). Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress Chaperones 22:493-502. doi: 10.1007/s12192-017-0762-4 (Abstract).

Zwirowski, S., Klosowska, A., Obuchowski, I., Nillegoda, N.B., Piróg, A., Zietkiewicz, S., Bukau, B., Mogk, A., Liberek, K. (2017). Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. EMBO J. 36:783-796. doi: 10.15252/embj.201593378 (Abstract).

Nillegoda, N.B., Stank, A., Malinverni, D., Alberts, N., Szlachcic, A., Barducci, A., De Los Rios, P., Wade, R.C., Bukau, B. (2017). Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. Elife doi: 10.7554/eLife.24560 (Abstract).

Garcia, V.M., Nillegoda, N.B., Bukau, B., Morano, K.A. (2017). Substrate binding by the yeast Hsp110 nucleotide exchange factor and molecular chaperone, Sse1, is not obligate for its biological activities. Mol. Biol. Cell pii: mbc.E17-01-0070. doi: 10.1091/mbc.E17-01-0070 (Abstract).

Blank, M., Grummt, I. (2017). The seven faces of SIRT7. Transcription 8:67-74. e1276658. DOI: 10.1080/21541264.2016.1276658 (Abstract).

Blank, M., Chen, S., Poetz, F., Schnölzer, M., Voit, R., Grummt, I. (2017). SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription. Nucl. Acids Res. 45:2675-2686. DOI: 10.1093/nar/gkx053 (Abstract).

Mleczko-Sanecka, K., da Silva, A.R., Call, D., Neves, J., Schmeer, N., Damm, G., Seehofer, D., Muckenthaler, M.U. (2017). Imatinib and spironolactone suppress hepcidin expression. Haematologica. pii: haematol.2016.162917. doi: 10.3324/haematol.2016.162917 (Abstract).

Metzendorf, C., Zeigerer, A., Seifert, S., Sparla, R., Najafi, B., Canonne-Hergaux, F., Zerial, M., Muckenthaler, M.U. (2017). Acute loss of the hepatic endo-lysosomal system in vivo causes compensatory changes in iron homeostasis. Scientific Reports doi:10.1038/s41598-017-02898-4 (Abstract).

Lauinger, L., Li, J., Shostak, A., Cemel, I.A., Ha, N., Zhang, Y., Merkl, P.E., Obermeyer, S., Stankovic-Valentin, N., Schafmeier, T., Wever, W.J., Bowers, A.A., Carter, K.P., Palmer, A.E., Tschochner, H., Melchior, F., Deshaies, R.J., Brunner, M., Diernfellner, A. (2017). Thiolutin is a zinc chelator that inhibits the Rpn11 and other JAMM metalloproteases. Nat. Chem. Biol. 13:709-714. doi: 10.1038/nchembio.2370 (Abstract).

Yu, J., Grant, O.C., Pett, C., Strahl, S., Woods, R.J., Westerlind, U. (2017). Induction of antibodies directed against branched core O-Mannosyl glycopeptides-selectivity complimentary to the ConA Lectin. Chemistry. 23:3466-3473. doi: 10.1002/chem.201605627 (Abstract).

Caydasi, A.K., Khmelinskii, A., Duenas-Sanchez, R., Kurtulmus, B., Knop, M., Pereira, G. Temporal and compartment-specific signals coordinate mitotic exit with spindle position (2017) Nat. Comm. 8:14129. DOI: 10.1038/ncomms14129 (Abstract).

Mogk, A., Bukau, B. Role of sHsps in organizing cytosolic protein aggregation and disaggregation. (2017) Cell Stress & Chaperones 22:493-502. doi: 10.1007/s12192-017-0762-4. (Abstract).

Muckenthaler, M.U., Rivella, S., Hentze, M.W., Galy, B. A Red Carpet for Iron Metabolism. (2017) Cell 168:344-361. DOI: http://dx.doi.org/10.1016/j.cell.2016.12.034. (Abstract).























































The SFB 1036 is funded by the